Peptide programming of supramolecular vinylidene fluoride ferroelectric phases – Nature

You May Be Interested In:McLaren accused of failing F1 star as Lando Norris told ‘it will only get worse’


  • Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wang, W., Li, J., Liu, H. & Ge, S. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. Weinh. 8, 2003074 (2021).

    Article 
    CAS 

    Google Scholar 

  • Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96–100 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qian, X., Chen, X., Zhu, L. & Zhang, Q. M. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380, eadg0902 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nat. Chem. 7, 281–294 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyajima, D. et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science 336, 209–213 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kawai, H. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Narayanan, A. et al. Ferroelectric polarization and second harmonic generation in supramolecular cocrystals with two axes of charge-transfer. J. Am. Chem. Soc. 139, 9186–9191 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kimura, K. & Ohigashi, H. Polarization behavior in vinylidene fluoride-trifluoroethylene copolymer thin films. Jpn. J. Appl. Phys. 25, 383 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Herman, Umemoto, S., Kikutani, T. & Okui, N. Chain length effects on crystal formation in vinylidene fluoride oligomers. Polym. J. 30, 659–663 (1998).

    Article 
    CAS 

    Google Scholar 

  • Yoshida, Y., Ishida, K., Ishizaki, K., Horiuchi, T. & Matsushige, K. Effect of substrate temperature on molecular orientation in evaporated thin films of vinylidene fluoride oligomer. Jpn. J. Appl. Phys. 36, 7389 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Noda, K. et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J. Appl. Phys. 93, 2866–2870 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • García-Iglesias, M. et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers. J. Am. Chem. Soc. 138, 6217–6223 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paramonov, S. E., Jun, H.-W. & Hartgerink, J. D. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Muraoka, T., Cui, H. & Stupp, S. I. Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J. Am. Chem. Soc. 130, 2946–2947 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, M., Tashiro, K. & Tadokoro, H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158–171 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Shivu, B. et al. Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry 52, 5176–5183 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sangji, M. H. et al. Supramolecular interactions and morphology of self-assembling peptide amphiphile nanostructures. Nano Lett. 21, 6146–6155 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hasegawa, R., Takahashi, Y., Chatani, Y. & Tadokoro, H. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600–610 (1972).

    Article 
    CAS 

    Google Scholar 

  • Yang, L. et al. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54, 1709–1728 (2013).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, X. et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375, 1418–1422 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).

    Article 
    ADS 

    Google Scholar 

  • Leung, C.-Y. et al. Crystalline polymorphism induced by charge regulation in ionic membranes. Proc. Natl Acad. Sci. USA 110, 16309–16314 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).

    Article 
    CAS 

    Google Scholar 

  • Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hung, A. M. & Stupp, S. I. Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing. Langmuir 25, 7084–7089 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    How fast is the Universe expanding? This astronomer took cosmology closer to an answer
    How fast is the Universe expanding? This astronomer took cosmology closer to an answer
    Structure of apolipoprotein B100 bound to the low-density lipoprotein receptor - Nature
    Structure of apolipoprotein B100 bound to the low-density lipoprotein receptor – Nature
    This lab robot mixes chemicals
    This lab robot mixes chemicals
    Why we are all lab rats in the digital world
    Why we are all lab rats in the digital world
    Crosslinking intermodular condensation in non-ribosomal peptide biosynthesis - Nature
    Crosslinking intermodular condensation in non-ribosomal peptide biosynthesis – Nature
    NIH cuts triggered a host of lawsuits: Nature’s guide to what’s next
    NIH cuts triggered a host of lawsuits: Nature’s guide to what’s next
    Headline Central | © 2024 | News