229ThF4 thin films for solid-state nuclear clocks – Nature

Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).
Google Scholar
Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).
Google Scholar
Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).
Google Scholar
Hudson, E. R., Vutha, A. C., Lamoreaux, S. K. & DeMille, D. Investigation of the optical transition in the 229Th nucleus: solid-state optical frequency standard and fundamental constant variation (Poster). In Proc. XXI International Conference on Atomic Physics (eds Rozman, M. G. et al.) MO28 (2008).
Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).
Google Scholar
Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181–186 (2003).
Google Scholar
Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).
Google Scholar
Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).
Google Scholar
Litvinova, E., Feldmeier, H., Dobaczewski, J. & Flambaum, V. Nuclear structure of lowest 229Th states and time-dependent fundamental constants. Phys. Rev. C 79, 064303 (2009).
Google Scholar
Fuchs, E. et al. Implications of the laser excitation of the Th-229 nucleus for dark matter searches. Preprint at https://arxiv.org/abs/2407.15924 (2024).
Caputo, A. et al. On the sensitivity of nuclear clocks to new physics. Preprint at https://arxiv.org/abs/2407.17526 (2024).
Beeks, K. et al. Fine-structure constant sensitivity of the Th-229 nuclear clock transition. Preprint at https://arxiv.org/abs/2407.17300 (2024).
Jeet, J. et al. Results of a direct search using synchrotron radiation for the low-energy 229Th nuclear isomeric transition. Phys. Rev. Lett. 114, 253001 (2015).
Google Scholar
Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).
Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296–299 (1996).
Google Scholar
Tkalya, E. V. Proposal for a nuclear gamma-ray laser of optical range. Phys. Rev. Lett. 106, 162501 (2011).
Google Scholar
von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).
Google Scholar
Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).
Google Scholar
Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).
Google Scholar
Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).
Google Scholar
Hogle, S. et al. Reactor production of thorium-229. Appl. Radiat. Isot. 114, 19–27 (2016).
Google Scholar
Forsberg, C. & Lewis, L. Uses For Uranium-233: What Should Be Kept For Future Needs? (Oak Ridge National Laboratory, 1999).
Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. PhD thesis, Univ. California (2018).
Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).
Google Scholar
Rellergert, W. G. et al. Progress towards fabrication of 229Th-doped high energy band-gap crystals for use as a solid-state optical frequency reference. IOP Conf. Ser. Mater. Sci. Eng. 15, 012005 (2010).
Google Scholar
Sletten, G. Preparation of targets of alpha-radioactive isotopes. Nucl. Instrum. Methods 102, 465–468 (1972).
Google Scholar
Adair, H. L. Preparation and characterization of radioactive samples for various areas of research. Nucl. Instrum. Methods 167, 45–53 (1979).
Google Scholar
Glover, K. M. et al. The preparation of stable and actinide nuclide targets for nuclear measurements. IEEE Trans. Nucl. Sci. 28, 1593–1596 (1981).
Google Scholar
Maier, H. J. Preparation of nuclear accelerator targets by vacuum evaporation. IEEE Trans. Nucl. Sci. 28, 1575–1583 (1981).
Google Scholar
Maier, H. J., Grossmann, R. & Friebel, H. U. Radioactive targets for nuclear accelerator experiments. Nucl. Instrum. Methods Phys. Res. B 56, 926–932 (1991).
Google Scholar
Greene, J. P., Ahmad, I. & Thomas, G. E. Radioactive targets and source development at Argonne National Laboratory. Nucl. Instrum. Methods Phys. Res. A 334, 101–110 (1993).
Google Scholar
Baumeister, P. W. Properties of Multilayer Filters (Institute of Optics, Univ. Rochester, 1973).
IAEA. Regulations for the Safe Transport of Radioactive Material. Report No. SSR-6 (Rev. 1) (IAEA, 2018).
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Ellis, J. K., Wen, X.-D. & Martin, R. L. Investigation of thorium salts as candidate materials for direct observation of the 229mTh nuclear transition. Inorg. Chem. 53, 6769–6774 (2014).
Google Scholar
Gouder, T. et al. Measurements of the band gap of ThF4 by electron spectroscopy techniques. Phys. Rev. Res. 1, 033005 (2019).
Google Scholar
Osipenko, M. et al. Measurement of photo- and radio-luminescence of thin ThF4 films. Nucl. Instrum. Methods Phys. Res. A 1068, 169744 (2024).
Google Scholar
Urbach, H. P. & Rikken, G. L. Spontaneous emission from a dielectric slab. Phys. Rev. A 57, 3913–3930 (1998).
Google Scholar
Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Google Scholar
Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).
Google Scholar
Karpeshin, F. F. & Trzhaskovskaya, M. B. A proposed solution for the lifetime puzzle of the 229mTh+ isomer. Nucl. Phys. A 1010, 122173 (2021).
Google Scholar
Kroemer, H. Problems in the theory of heterojunction discontinuities. CRC Crit. Rev. Solid State Sci. 5, 555–564 (1975).
Google Scholar
Brillson, L. J. Surfaces and Interfaces of Electronic Materials (Wiley, 2012).
Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).
Google Scholar
Pastor, R. & Arita, K. Preparation and crystal growth of ThF4. Mater. Res. Bull. 9, 579–583 (1974).
Google Scholar
Martel, L. et al. Insight into the crystalline structure of ThF4 with the combined use of neutron diffraction, 19F magic-angle spinning-NMR, and density functional theory calculations. Inorg. Chem. 57, 15350–15360 (2018).
Google Scholar
Bemis, C. E. et al. Coulomb excitation of states in 229Th. Phys. Scr. 38, 657–663 (1988).
Google Scholar
Gerstenkorn, S. et al. Structures hyperfines du spectre d’étincelle, moment magnétique et quadrupolaire de l’isotope 229 du thorium. J. Phys. 35, 483–495 (1974).
Google Scholar
Campbell, C., Radnaev, A. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).
Google Scholar
Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).
Google Scholar
Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).
Google Scholar
Jackson, R. A., Amaral, J. B., Valerio, M. E. G., Demille, D. P. & Hudson, E. R. Computer modelling of thorium doping in LiCaAlF6 and LiSrAlF6: application to the development of solid state optical frequency devices. J. Phys. Condens. Matter 21, 325403 (2009).
Google Scholar
Pimon, M., Grüneis, A., Mohn, P. & Schumm, T. Ab-initio study of calcium fluoride doped with heavy isotopes. Crystals 12, 1128 (2022).
Google Scholar
Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Google Scholar
Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S. & Rüffer, R. Collective Lamb shift in single-photon superradiance. Science 328, 1248–1251 (2010).
Google Scholar
Dornow, V. A., Binder, J., Heidemann, A., Kalvius, G. M. & Wortmann, G. Preparation of narrow-line sources for the 6.2 keV Mössbauer resonance of 181Ta. Nucl. Instrum. Methods 163, 491–497 (1979).
Google Scholar
von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).
Google Scholar
Chastain, J. & King R. C. in Handbook of X-ray Photoelectron Spectroscopy Vol. 40 (ed. Chastain, J.) 221 (Perkin-Elmer, 1992).
Li, H. H. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data 8, 161–290 (1980).
Google Scholar
French, R. H., Müllejans, H. & Jones, D. J. Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81, 2549–2557 (1998).
Google Scholar
Zemax OpticStudio. Zemax v.12.2 (ANSYS Inc., 2012).
Steele, J. A. et al. How to GIWAXS: grazing incidence wide angle X-ray scattering applied to metal halide perovskite thin films. Adv. Energy Mater. 13, 2300760 (2023).
Google Scholar
Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Petrilli, H. M., Blochl, P. E., Blaha, P. & Schwarz, K. Electric-field-gradient calculations using the projector augmented wave method. Phys. Rev. B 57, 14690–14697 (1998).
Google Scholar
Krukau, A., Vydrov, O., Izmaylov, A. & Scuseria, G. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
Google Scholar
Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).
Google Scholar
Nienhuis, G. & Alkemade, C. Th. J. Atomic radiative transition probabilities in a continuous medium. Physica B+C 81C, 181–188 (1976).
Google Scholar
Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh(3/2+, 3.5 ± 1.0 eV) decay. JETP Lett. 71, 311–313 (2000).
Google Scholar
Lukosz, W. & Kunz, R. E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J. Opt. Soc. Am. 67, 1615–1619 (1978).
Google Scholar
Boyd, M. M. High Precision Spectroscopy of Strontium in an Optical Lattice: Towards a New Standard for Frequency and Time. PhD thesis, Univ. Colorado (2007).