A pulsar-like polarization angle swing from a nearby fast radio burst – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Pearlman, A. B., Majid, W. A., Prince, T. A., Kocz, J. & Horiuchi, S. Pulse morphology of the Galactic Center magnetar PSR J1745-2900. Astrophys. J. 866, 160 (2018).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    ADS 

    Google Scholar 

  • Kirsten, F. et al. A repeating fast radio burst source in a globular cluster. Nature 602, 585–589 (2022).

    PubMed 
    ADS 

    Google Scholar 

  • Pandhi, A. et al. Polarization properties of 128 non-repeating fast radio bursts from the first CHIME/FRB baseband catalog. Astrophys. J. 968, 50 (2024).

  • Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225–229 (1969).

    ADS 

    Google Scholar 

  • Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    ADS 

    Google Scholar 

  • Zhang, B. A “cosmic comb” model of fast radio bursts. Astrophys. J. Lett. 836, L32 (2017).

    ADS 

    Google Scholar 

  • Yang, Y.-P. & Zhang, B. Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. Astrophys. J. 868, 31 (2018).

    ADS 

    Google Scholar 

  • Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014).

    ADS 

    Google Scholar 

  • Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    ADS 

    Google Scholar 

  • Beloborodov, A. M. Blast waves from magnetar flares and fast radio bursts. Astrophys. J. 896, 142 (2020).

    ADS 

    Google Scholar 

  • Luo, R. et al. Diverse polarization angle swings from a repeating fast radio burst source. Nature 586, 693–696 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • Nimmo, K. et al. Burst timescales and luminosities as links between young pulsars and fast radio bursts. Nat. Astron. 6, 393–401 (2022).

    ADS 

    Google Scholar 

  • Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    PubMed 
    ADS 

    Google Scholar 

  • Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. Lett. 891, L38 (2020).

    ADS 

    Google Scholar 

  • Zhang, Y.-K. et al. FAST observations of FRB 20220912A: burst properties and polarization characteristics. Astrophys. J. 955, 142 (2023).

    ADS 

    Google Scholar 

  • Stinebring, D. R., Cordes, J. M., Rankin, J. M., Weisberg, J. M. & Boriakoff, V. Pulsar polarization fluctuations. I. 1404 MHz statistical summaries. Astrophys. J. Suppl. Ser. 55, 247–277 (1984).

    ADS 

    Google Scholar 

  • McKinnon, M. M. & Stinebring, D. R. The mode-separated pulse profiles of pulsar radio emission. Astrophys. J. 529, 435–446 (2000).

    ADS 

    Google Scholar 

  • Wang, C., Lai, D. & Han, J. Polarization changes of pulsars due to wave propagation through magnetospheres. Mon. Not. R. Astron. Soc. 403, 569–588 (2010).

    ADS 

    Google Scholar 

  • Philippov, A. & Kramer, M. Pulsar magnetospheres and their radiation. Annu. Rev. Astron. Astrophys. 60, 495–558 (2022).

    ADS 

    Google Scholar 

  • Johnston, S. et al. The Thousand-Pulsar-Array programme on MeerKAT-XI. Application of the rotating vector model. Mon. Not. R. Astron. Soc. 520, 4801–4814 (2023).

    ADS 

    Google Scholar 

  • Mitra, D., Melikidze, G. I. & Basu, R. Evidence for coherent curvature radiation in PSR J1645-0317 with disordered distribution of polarization position angle. Mon. Not. R. Astron. Soc. 521, L34–L38 (2023).

    ADS 

    Google Scholar 

  • Johnston, S., Mitra, D., Keith, M. J., Oswald, L. S. & Karastergiou, A. The Thousand-Pulsar-Array programme on MeerKAT XIV: on the high linearly polarized pulsar signals. Mon. Not. R. Astron. Soc. 530, 4839–4849 (2024).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. The CHIME Fast Radio Burst Project: system overview. Astrophys. J. 863, 48 (2018).

    ADS 

    Google Scholar 

  • Michilli, D. et al. An analysis pipeline for CHIME/FRB full-array baseband data. Astrophys. J. 910, 147 (2021).

    ADS 

    Google Scholar 

  • Seymour, A., Michilli, D. & Pleunis, Z. DM_phase: algorithm for correcting dispersion of radio signals. Astrophysics Source Code Library, record ascl:1910.004 (2019).

  • Lang, K. R. Pulse broadening due to angular scattering in the interstellar medium. Astrophys. Lett. 7, 175–178 (1971).

    ADS 

    Google Scholar 

  • Cordes, J. M. & Lazio, T. J. W. Ne2001. i. a new model for the galactic distribution of free electrons and its fluctuations. Preprint at arxiv.org/abs/astro-ph/0207156 (2002).

  • Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS 

    Google Scholar 

  • Feng, Y. et al. Frequency-dependent polarization of repeating fast radio bursts—implications for their origin. Science 375, 1266–1270 (2022).

    PubMed 
    ADS 

    Google Scholar 

  • Beniamini, P., Kumar, P. & Narayan, R. Faraday depolarization and induced circular polarization by multipath propagation with application to FRBs. Mon. Not. R. Astron. Soc. 510, 4654–4668 (2022).

    ADS 

    Google Scholar 

  • Mckinven, R. et al. Polarization pipeline for fast radio bursts detected by CHIME/FRB. Astrophys. J. 920, 138 (2021).

    ADS 

    Google Scholar 

  • Aggarwal, K. et al. Probabilistic Association of Transients to their Hosts (PATH). Astrophys. J. 911, 95 (2021).

    ADS 

    Google Scholar 

  • Nimmo, K. et al. Magnetospheric origin of a fast radio burst constrained using scintillation. Nature https://doi.org/10.1038/s41586-024-08297-w (2024).

  • Blaskiewicz, M., Cordes, J. M. & Wasserman, I. A relativistic model of pulsar polarization. Astrophys. J. 370, 643 (1991).

    ADS 

    Google Scholar 

  • Blinov, D. et al. RoboPol: first season rotations of optical polarization plane in blazars. Mon. Not. R. Astron. Soc. 453, 1669–1683 (2015).

    ADS 

    Google Scholar 

  • Blinov, D. et al. RoboPol: do optical polarization rotations occur in all blazars? Mon. Not. R. Astron. Soc. 462, 1775–1785 (2016).

    ADS 

    Google Scholar 

  • Miller-Jones, J. C. A. et al. A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni. Nature 569, 374–377 (2019).

    PubMed 
    ADS 

    Google Scholar 

  • Lyutikov, M. & Kravchenko, E. V. Polarization swings in blazars. Mon. Not. R. Astron. Soc. 467, 3876–3886 (2017).

    ADS 

    Google Scholar 

  • Johnston, S. & Karastergiou, A. The period–width relationship for radio pulsars revisited. Mon. Not. R. Astron. Soc. 485, 640–647 (2019).

    ADS 

    Google Scholar 

  • The Chime/Frb Collaboration. CHIME/FRB discovery of 25 repeating fast radio burst sources. Astrophys. J. 947, 83 (2023).

    ADS 

    Google Scholar 

  • Cordes, J. M. & Lazio, T. J. W. NE2001. II. Using radio propagation data to construct a model for the galactic distribution of free electrons. Preprint at arxiv.org/abs/astro-ph/0301598 (2003).

  • Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208, 19 (2013).

    ADS 

    Google Scholar 

  • Hutschenreuter, S. et al. The Galactic Faraday rotation sky 2020. Astron. Astrophys. 657, A43 (2022).

    Google Scholar 

  • Waters, C. Z. et al. Pan-STARRS pixel processing: detrending, warping, stacking. Astrophys. J. Suppl. Ser. 251, 4 (2020).

    ADS 

    Google Scholar 

  • Gaia Collaboration. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

    Google Scholar 

  • Giri, U. et al. Comprehensive Bayesian analysis of FRB-like bursts from SGR 1935+2154 observed by CHIME/FRB. Preprint at arxiv.org/abs/2310.16932 (2023).

  • Fonseca, E. et al. Modeling the morphology of fast radio bursts and radio pulsars with fitburst. Astrophys. J. Suppl. Ser. 271, 49 (2024).

    ADS 

    Google Scholar 

  • Ocker, S. K. et al. The large dispersion and scattering of FRB 20190520B are dominated by the host galaxy. Astrophys. J. 931, 87 (2022).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. Updating the first CHIME/FRB catalog of fast radio bursts with baseband data. Astrophys. J. 969, 145 (2024).

  • Helou, G. et al. in Databases and On-line Data in Astronomy, vol. 171 of Astrophysics and Space Science Library (eds Albrecht, M. A. & Egret, D.), 89–106 (Springer, 1991).

  • Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Astrophys. J. Suppl. Ser. 251, 7 (2020).

    ADS 

    Google Scholar 

  • Bradley, L. et al. astropy/photutils: 1.9.0. Zenodo https://doi.org/10.5281/zenodo.8248020 (2023).

  • Oke, J. B. Absolute spectral energy distributions for white dwarfs. Astrophys. J. Suppl. Ser. 27, 21 (1974).

    ADS 

    Google Scholar 

  • Massey, P., Strobel, K., Barnes, J. V. & Anderson, E. Spectrophotometric standards. Astrophys. J. 328, 315 (1988).

    ADS 

    Google Scholar 

  • Oke, J. B. Faint spectrophotometric standard stars. Astron. J. 99, 1621 (1990).

    ADS 

    Google Scholar 

  • Bernardi, M. et al. Galaxy luminosities, stellar masses, sizes, velocity dispersions as a function of morphological type. Mon. Not. R. Astron. Soc. 404, 2087–2122 (2010).

    ADS 

    Google Scholar 

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS 

    Google Scholar 

  • Intema, H., Jagannathan, P., Mooley, K. & Frail, D. The GMRT 150 MHz all-sky radio survey: first alternative data release TGSS ADR1. Astron. Astrophys. 598, A78 (2017).

    ADS 

    Google Scholar 

  • Rengelink, R. et al. The Westerbork Northern Sky Survey (WENSS)—I. A 570 square degree Mini-Survey around the North Ecliptic Pole. Astron. Astrophys. Suppl. Ser. 124, 259–280 (1997).

    ADS 

    Google Scholar 

  • Condon, J. J. et al. The NRAO VLA Sky Survey. Astron. J. 115, 1693–1716 (1998).

    ADS 

    Google Scholar 

  • Lacy, M. et al. The VLA Sky Survey (VLASS): description and science goals. Am. Astron. Soc. 227, 324.09 (2016).

    Google Scholar 

  • Hancock, P. J., Murphy, T., Gaensler, B. M., Hopkins, A. & Curran, J. R. Compact continuum source finding for next generation radio surveys. Mon. Not. R. Astron. Soc. 422, 1812–1824 (2012).

    ADS 

    Google Scholar 

  • Hancock, P. J., Trott, C. M. & Hurley-Walker, N. Source finding in the era of the SKA (precursors): aegean 2.0. Publ. Astron. Soc. Aus. 35, e011 (2018).

    ADS 

    Google Scholar 

  • Murphy, E. J. et al. Calibrating extinction-free star formation rate diagnostics with 33 GHz free–free emission in NGC 6946. Astrophys. J. 737, 67 (2011).

    ADS 

    Google Scholar 

  • Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004).

    ADS 

    Google Scholar 

  • Mckinven, R. et al. A large-scale magneto-ionic fluctuation in the local environment of periodic fast radio burst source FRB 20180916B. Astrophys. J. 950, 12 (2023).

    ADS 

    Google Scholar 

  • Mckinven, R. et al. Revealing the dynamic magnetoionic environments of repeating fast radio burst sources through multiyear polarimetric monitoring with CHIME/FRB. Astrophys. J. 951, 82 (2023).

    ADS 

    Google Scholar 

  • Oswald, L. S. et al. Pulsar polarization: a broad-band population view with the Parkes Ultra-Wideband receiver. Mon. Not. R. Astron. Soc. 520, 4961–4980 (2023).

    ADS 

    Google Scholar 

  • Rookyard, S. C., Weltevrede, P. & Johnston, S. Constraints on viewing geometries from radio observations of γ-ray-loud pulsars using a novel method. Mon. Not. R. Astron. Soc. 446, 3367–3388 (2015).

    ADS 

    Google Scholar 

  • Avni, Y. Energy spectra of X-ray clusters of galaxies. Astrophys. J. 210, 642–646 (1976).

    ADS 

    Google Scholar 

  • Gil, J., Gronkowski, P. & Rudnicki, W. Geometry of the emission region of PSR 0950+08. Astron. Astrophys. 132, 312–316 (1984).

    ADS 

    Google Scholar 

  • Kijak, J. & Gil, J. Radio emission altitudes in pulsar magnetospheres. Mon. Not. R. Astron. Soc. 288, 631–637 (1997).

    ADS 

    Google Scholar 

  • Wang, P. F. et al. FAST pulsar database: I. Polarization profiles of 682 pulsars. Res. Astron. Astrophys. 23, 104002 (2023).

  • Zhang, B. Fast radio burst energetics and detectability from high redshifts. Astrophys. J. Lett. 867, L21 (2018).

    ADS 

    Google Scholar 

  • Szary, A., Zhang, B., Melikidze, G. I., Gil, J. & Xu, R.-X. Radio efficiency of pulsars. Astrophys. J. 784, 59 (2014).

    ADS 

    Google Scholar 

  • Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. VizieR Online Data Catalog VII/245 (IUCAA, 2005).

  • Kuzmin, A. D. Giant pulses of pulsar radio emission. In Proc. Isolated Neutron Stars: From the Surface to the Interior, 563–567 (Springer, 2007).

  • Surnis, M. P. et al. Discovery of an extremely intermittent periodic radio source. Mon. Not. R. Astron. Soc.L143–L148 (2023).

  • Caleb, M. et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 6, 828–836 (2022).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hurley-Walker, N. et al. A radio transient with unusually slow periodic emission. Nature 601, 526–530 (2022).

    PubMed 
    ADS 

    Google Scholar 

  • Hurley-Walker, N. et al. A long-period radio transient active for three decades. Nature 619, 487–490 (2023).

    PubMed 
    ADS 

    Google Scholar 

  • Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59–62 (2020).

    PubMed 
    ADS 

    Google Scholar 

  • Lower, M. E., Johnston, S., Shannon, R. M., Bailes, M. & Camilo, F. The dynamic magnetosphere of Swift J1818.0-1607. Mon. Not. R. Astron. Soc. 502, 127–139 (2021).

    ADS 

    Google Scholar 

  • Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    ADS 

    Google Scholar 

  • Zhu, W. et al. A radio pulsar phase from SGR J1935+2154 provides clues to the magnetar FRB mechanism. Sci. Adv. 9, eadf6198 (2023).

  • Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS 

    Google Scholar 

  • Camilo, F., Reynolds, J., Johnston, S., Halpern, J. P. & Ransom, S. M. The magnetar 1E 1547.0-5408: radio spectrum, polarimetry, and timing. Astrophys. J. 679, 681–686 (2008).

    ADS 

    Google Scholar 

  • Lower, M. E. et al. The 2022 high-energy outburst and radio disappearing act of the magnetar 1E 1547.0-5408. Astrophys. J. 945, 153 (2023).

    ADS 

    Google Scholar 

  • Camilo, F. et al. Polarized radio emission from the magnetar XTE J1810-197. Astrophys. J. Lett. 659, L37–L40 (2007).

    ADS 

    Google Scholar 

  • Pleunis, Z. et al. Fast radio burst morphology in the first CHIME/FRB catalog. Astrophys. J. 923, 1 (2021).

    ADS 

    Google Scholar 

  • Connor, L., Miller, M. C. & Gardenier, D. W. Beaming as an explanation of the repetition/width relation in FRBs. Mon. Not. R. Astron. Soc. 497, 3076–3082 (2020).

    ADS 

    Google Scholar 

  • The CHIME/FRB Collaboration. The First CHIME/FRB Fast Radio Burst Catalog. Astrophys. J. Suppl. Ser. 257, 59 (2021).

    ADS 

    Google Scholar 

  • Kirsten, F. et al. A link between repeating and non-repeating fast radio bursts through their energy distributions. Nat. Astron. 8, 337–346 (2024).

  • Nimmo, K. et al. A burst storm from the repeating FRB 20200120E in an M81 globular cluster. Mon. Not. R. Astron. Soc. 520, 2281–2305 (2023).

    ADS 

    Google Scholar 

  • Zhang, S. B. et al. A bright burst from FRB 20200120E in a globular cluster of the nearby galaxy M81. Nat. Commun. 15, 7454 (2024).

  • Mickaliger, M. B. et al. A giant sample of giant pulses from the Crab pulsar. Astrophys. J. 760, 64 (2012).

    ADS 

    Google Scholar 

  • Bilous, A. V., Pennucci, T. T., Demorest, P. & Ransom, S. M. A broadband radio study of the average profile and giant pulses from PSR B1821-24A. Astrophys. J. 803, 83 (2015).

    ADS 

    Google Scholar 

  • Mahajan, N., van Kerkwijk, M. H., Main, R. & Pen, U.-L. Mode changing and giant pulses in the millisecond pulsar PSR B1957+20. Astrophys. J. Lett. 867, L2 (2018).

    ADS 

    Google Scholar 

  • McKee, J. W. et al. A detailed study of giant pulses from PSR B1937+21 using the Large European Array for Pulsars. Mon. Not. R. Astron. Soc. 483, 4784–4802 (2019).

    ADS 

    Google Scholar 

  • Geyer, M. et al. The Thousand-Pulsar-Array programme on MeerKAT III: giant pulse characteristics of PSR J0540-6919. Mon. Not. R. Astron. Soc. 505, 4468–4482 (2021).

    ADS 

    Google Scholar 

  • Caleb, M. et al. Radio and X-ray observations of giant pulses from XTE J1810-197. Mon. Not. R. Astron. Soc. 510, 1996–2010 (2022).

    ADS 

    Google Scholar 

  • Wang, P. et al. X-ray hardening preceding the onset of SGR 1935+2154’s radio pulsar phase. Preprint at arxiv.org/abs/2308.08832 (2023).

  • Pleunis, Z. Cecilia Payne-Gaposchkin Doctoral Dissertation Award in Astrophysics Finalist (2021): fast radio burst detection and morphology with the CHIME telescope. In APS April Meeting Abstracts, Vol. 2021 of APS Meeting Abstracts, B06.003 (APS, 2021).

  • Kaplan, D. L. PSS: Pulsar Survey Scraper. Astrophysics Source Code Library, record ascl:2210.001 (2022).

  • Ocker, S. K., Cordes, J. M. & Chatterjee, S. Electron density structure of the local galactic disk. Astrophys. J. 897, 124 (2020).

    ADS 

    Google Scholar 

  • Dolag, K., Gaensler, B. M., Beck, A. M. & Beck, M. C. Constraints on the distribution and energetics of fast radio bursts using cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 451, 4277–4289 (2015).

    ADS 

    Google Scholar 

  • Yamasaki, S. & Totani, T. The galactic halo contribution to the dispersion measure of extragalactic fast radio bursts. Astrophys. J. 888, 105 (2020).

    ADS 

    Google Scholar 

  • Ravi, V. et al. The host galaxy and persistent radio counterpart of FRB 20201124A. Mon. Not. R. Astron. Soc. 513, 982–990 (2022).

    ADS 

    Google Scholar 

  • Bhardwaj, M. et al. A nearby repeating fast radio burst in the direction of M81. Astrophys. J. Lett. 910, L18 (2021).

    ADS 

    Google Scholar 

  • Prochaska, J. X. & Zheng, Y. Probing galactic haloes with fast radio bursts. Mon. Not. R. Astron. Soc. 485, 648–665 (2019).

    ADS 

    Google Scholar 

  • Ravi, V. et al. Deep synoptic array science: a 50 Mpc fast radio burst constrains the mass of the Milky Way circumgalactic medium. Preprint at arxiv.org/abs/2301.01000 (2023).

  • Cook, A. M. et al. An FRB sent me a DM: constraining the electron column of the Milky Way halo with fast radio burst dispersion measures from CHIME/FRB. Astrophys. J. 946, 58 (2023).

    ADS 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    These stunning images trace ships’ routes as they move
    These stunning images trace ships’ routes as they move
    These two ancient human relatives crossed paths 1.5 million years ago
    These two ancient human relatives crossed paths 1.5 million years ago
    The Download: inside animals’ minds, and how to make AI agents useful
    The Download: inside animals’ minds, and how to make AI agents useful
    High time to tackle drug-resistant fungal infections
    High time to tackle drug-resistant fungal infections
    The neurons that mediate a psychedelic’s long-term antidepressive effects
    The neurons that mediate a psychedelic’s long-term antidepressive effects
    There can be no winners in a US-China AI arms race
    There can be no winners in a US-China AI arms race
    Headline Central | © 2025 | News