GaAs nano-ridge laser diodes fully fabricated in a 300-mm CMOS pilot line – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mohanty, A. et al. Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Khial, P. P. et al. Nanophotonic optical gyroscope with reciprocal sensitivity enhancement. Nat. Photon. 12, 671–675 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rickman, A. The commercialization of silicon photonics. Nat. Photon. 8, 579–582 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Nagarajan, R. et al. 2.5D heterogeneous integration for silicon photonics engines in optical transceivers. IEEE J. Selec. Top. Quant. Electron. 29, 8200209 (2023).

    CAS 

    Google Scholar 

  • Bian, Y. et al. 3D integrated laser attach technology on a 300-mm monolithic CMOS silicon photonics platform. IEEE J. Sel. Top. Quant. Electron. 29, 8200519 (2023).

  • Marinins, A. et al. Wafer-scale hybrid integration of InP DFB lasers on Si photonics by flip-chip bonding with sub-300 nm alignment precision. IEEE J. Selec. Top. Quant. Electron. 29, 8200311 (2023).

    CAS 

    Google Scholar 

  • Ramirez, J. M. et al. III-V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Selec. Top. Quant. Electron. 26, 6100213 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fujii, T. et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica 7, 838–846 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, W. et al. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwav. Technol. 36, 4655–4663 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 

  • Fotiadis, K. et al. Silicon photonic 16 x 16 cyclic AWGR for DWDM O-band interconnects. IEEE Photon. Technol. Lett. 32, 1233–1236 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Khani, M. et al. SiP-ML: high-bandwidth optical network interconnects for machine learning training. In Proc. ACM Special Interest Group on Data Communication Conference 657–675 (ACM, 2021).

  • Coomans, W. et al. XG-fast: the 5th generation broadband. IEEE Commun. Mag. 53, 83–88 (2015).

    Article 

    Google Scholar 

  • Driscoll, J. B., Perea, P., Kauffman, A., Zilkie, A. J. & Ver Steeg, B. Pioneering silicon photonics for wearable sensors. In Proc. Optical Fiber Communications Conference and Exhibition (OFC) 2023 Th1A.6 1–3 (Optica Publishing Group, 2023).

  • De Dobbelaere, P. et al. Packaging of silicon photonics systems. In Proc. Optical Fiber Communication Conference (OFC) 2014 W3I.2 1–3 (Optica Publishing Group, 2014).

  • Roelkens, G. et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photon. 9, 010901 (2024).

    Article 
    CAS 

    Google Scholar 

  • Intel. Intel Labs announces integrated photonics research advancement. Intel Newsroom https://www.intel.com/content/www/us/en/newsroom/news/intel-labs-announces-integrated-photonics-research-advancement.html (2022).

  • Tower Semiconductor. Tower Semiconductor announces World’s first heterogeneous integration of quantum dot lasers on its popular SiPho foundry platform PH18. Press Releases https://towersemi.com/2023/03/02/03022023/ (2023).

  • Shi, B. et al. MOCVD grown low dislocation density GaAs-on-V-groove patterned (001) Si for 1.3 μm quantum dot laser applications. Appl. Phys. Lett. 114, 172102 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chen, S. et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photon. 10, 307–311 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wan, Y. et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl. Phys. Lett. 107, 081106 (2015).

    Article 
    ADS 

    Google Scholar 

  • Liu, A. Y. et al. Reliability of InAs/GaAs quantum dot lasers epitaxially grown on silicon. IEEE J. Selec. Top. Quant. Electron. 21, 690–697 (2015).

    Article 
    ADS 

    Google Scholar 

  • Shang, C. et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 8, 749–754 (2021).

    Article 
    ADS 

    Google Scholar 

  • Shang, C. et al. Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light: Sci. Appl. 11, 299 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Wei, W.-Q. et al. Monolithic integration of embedded III-V lasers on SOI. Light Sci. Appl. 12, 84 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fiorenza, J. G. et al. Aspect ratio trapping: a unique technology for integrating Ge and III-Vs with silicon CMOS. ECS Trans. 33, 963 (2010).

    Article 
    CAS 

    Google Scholar 

  • Li, J. Z. et al. Defect reduction of GaAs epitaxy on Si (001) using selective aspect ratio trapping. Appl. Phys. Lett. 91, 021114 (2007).

    Article 
    ADS 

    Google Scholar 

  • Waldron, N. et al. Integration of InGaAs channel n-MOS devices on 200 mm Si wafers using the aspect-ratio-trapping technique. ECS Trans. 45, 115 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wen, P. et al. Waveguide coupled III-V photodiodes monolithically integrated on Si. Nat. Commun. 13, 909 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Han, Y. et al. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator. Appl. Phys. Lett. 114, 192105 (2019).

    Article 
    ADS 

    Google Scholar 

  • Xue, Y. et al. High-speed and low dark current silicon-waveguide-coupled III-V photodetectors selectively grown on SOI. Optica 11, 1219–1226 (2022).

    Article 
    ADS 

    Google Scholar 

  • Kunert, B. et al. III/V nano ridge structures for optical applications on patterned 300 mm silicon substrate. Appl. Phys. Lett. 109, 091101 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kunert, B. et al. Integration of III/V hetero-structures by selective area growth on Si for nano- and optoelectronics. ECS Trans. 75, 409 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kunert, B. et al. How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches. Semicon. Sci. Technol. 33, 093002 (2018).

    Article 
    ADS 

    Google Scholar 

  • Baryshnikova, M. et al. Nano-ridge engineering of GaSb for the integration of InAs/GaSb heterostructures on 300 mm (001) Si. Crystals 4, 330 (2020).

    Article 

    Google Scholar 

  • Kunert, B. et al. Application of an Sb surfactant in InGaAs nano-ridge engineering on 300 mm silicon substrates. Crystal Growth Design 21, 1657–1665 (2021).

    Article 
    CAS 

    Google Scholar 

  • Van Thourhout, D. et al. Semiconductors and Semimetals Ch. 8 (Elsevier, 2019).

  • Mols, Y. et al. Structural analysis and resistivity measurements of InAs and GaSb fins on 300 mm Si for vertical (T)FET. J. Appl. Phys. 125, 245107 (2019).

  • Shi, Y. et al. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica 12, 1468–1473 (2017).

    Article 
    ADS 

    Google Scholar 

  • Vais, A. et al. First demonstration of III-V HBTs on 300 mm Si substrates using nano-ridge engineering. In Proc. International Electron Devices Meeting (IEDM) 9.1.1–9.1.4 (IEEE, 2019).

  • Özdemir, C. I. et al. Low dark current and high responsivity 1020 nm InGaAs/GaAs nano-ridge waveguide photodetector monolithically integrated on a 300-mm Si wafer. J. Lightwav. Technol. 39, 5263–5269 (2021).

    Article 
    ADS 

    Google Scholar 

  • Kazi, Z. I. et al. Realization of GaAs/AlGaAs lasers on Si substrates using epitaxial lateral overgrowth by metalorganic chemical vapor deposition. Jpn J. Appl. Phys. 40, 4903 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hasegawa, Y., Egawa, T., Jimbo, T. & Umeno, M. Influences of dark line defects on characteristics of AlGaAs/GaAs quantum well lasers grown on Si substrates. Jpn J. Appl. Phys. 34, 2994 (1995).

    Article 
    ADS 

    Google Scholar 

  • Colucci, D. et al. Unique design approach to realize an O-band laser monolithically integrated on 300 mm Si substrate by nano-ridge engineering. Opt. Express 30, 13510–13521 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Shi, Y. et al. Novel adiabatic coupler for III-V nano-ridge laser grown on a Si photonics platform. Opt. Express 27, 37781–37794 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Kunert, B. et al. How to control defect formation in monolithic III/V heteroepitaxy on (100) Si? A critical review on current approaches. Semiconductor Sci. Technol. 33, 093002 (2018).

    Article 
    ADS 

    Google Scholar 

  • Coldren, L. A. et al. Diode Lasers and Integrated Circuits (Wiley, 2012).

  • Strand, T. A. et al. Low regrowth-interface recombination rates in InGaAs-GaAs buried ridge lasers fabricated by in situ processing. Appl. Phys. Lett. 66, 1966–1968 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tsvid, G. et al. Spontaneous radiative efficiency and gain characteristics of strained-layer InGaAs–GaAs quantum-well lasers. IEEE J. Quant. Electron. 44, 732–739 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Haglund, E. et al. 25 Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter. Electron. Lett. 48, 517–519 (2012).

    Article 
    ADS 

    Google Scholar 

  • Henry, C. H. Theory of the linewidth of semiconductor lasers. IEEE J. Quant. Electron. 18, 259–264 (1982).

    Article 
    ADS 

    Google Scholar 

  • Zhao, Y. et al. Spontaneous emission factor for semiconductor superluminescent diodes. J. Appl. Phys. 85, 3945–3948 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hsieh, P.-Y. et al. Advanced current–voltage model of electrical contacts to GaAs-and Ge-based active silicon photonic devices. IEEE Trans. Electron Devices 70, 4274–4279 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Caer, C. GaAs nano-ridge laser diodes fully fabricated in a 300 mm CMOS pilot line. Zenodo https://doi.org/10.5281/zenodo.13286360 (2024).

  • Lv, Z. et al. Ultra-high thermal stability InAs/GaAs quantum dot lasers grown on on-axis Si (001) with a record-high continuous-wave operating temperature of 150 °C. Opt. Express 31, 24173–24182 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    AI's power play: the high-stakes race for energy capacity | Computer Weekly
    AI’s power play: the high-stakes race for energy capacity | Computer Weekly
    The weight-loss drugs being tested in 2025: will they beat Ozempic?
    The weight-loss drugs being tested in 2025: will they beat Ozempic?
    Are PhDs losing their lustre? Why fewer students are enrolling in doctoral degrees
    Are PhDs losing their lustre? Why fewer students are enrolling in doctoral degrees
    Can trauma from violence be genetically inherited? Scientists debate Syria refugee study
    Can trauma from violence be genetically inherited? Scientists debate Syria refugee study
    Obesity drugs: huge study highlights new health risks
    Obesity drugs: huge study highlights new health risks
    Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia - Nature
    Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia – Nature
    Headline Central | © 2025 | News