Infrared nanosensors of piconewton to micronewton forces – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Gouveia, B. et al. Capillary forces generated by biomolecular condensates. Nature 609, 255–264 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Ucar, H. et al. Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature 600, 686–689 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Handler, A. & Ginty, D. D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 22, 521–537 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Qiu, X. & Müller, U. Sensing sound: cellular specializations and molecular force sensors. Neuron 110, 3667–3687 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Murthy, S. E., Dubin, A. E. & Patapoutian, A. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18, 771–783 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zeng, W.-Z. et al. Piezos mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362, 464–467 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A. & Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 7, 235–249 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gómez-González, M., Latorre, E., Arroyo, M. & Trepat, X. Measuring mechanical stress in living tissues. Nat. Rev. Phys. 2, 300–317 (2020).

    Article 

    Google Scholar 

  • de Vasconcelos, L. S. et al. Chemomechanics of rechargeable batteries: status, theories, and perspectives. Chem. Rev. 122, 13043–13107 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chen, X. et al. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100, 799–815 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, J. & Reinhart-King, C. A. Targeting tissue stiffness in metastasis: mechanomedicine improves cancer therapy. Cancer Cell 37, 754–755 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mehlenbacher, R. D., Kolbl, R., Lay, A. & Dionne, J. A. Nanomaterials for in vivo imaging of mechanical forces and electrical fields. Nat. Rev. Mater. 3, 17080 (2017).

    Article 
    ADS 

    Google Scholar 

  • Blanchard, A. T. & Salaita, K. Emerging uses of DNA mechanical devices. Science 365, 1080–1081 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Brockman, J. M. et al. Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat. Methods 17, 1018–1024 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sun, W., Gao, X., Lei, H., Wang, W. & Cao, Y. Biophysical approaches for applying and measuring biological forces. Adv. Sci. 9, 2105254 (2022).

    Article 

    Google Scholar 

  • Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Boocock, D., Hino, N., Ruzickova, N., Hirashima, T. & Hannezo, E. Theory of mechanochemical patterning and optimal migration in cell monolayers. Nat. Phys. 17, 267–274 (2021).

    Article 
    CAS 

    Google Scholar 

  • Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Petridou, N. I., Spiró, Z. & Heisenberg, C.-P. Multiscale force sensing in development. Nat. Cell Biol. 19, 581–588 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, C. et al. Heterogeneous microenvironmental stiffness regulates pro-metastatic functions of breast cancer cells. Acta Biomater. 131, 326–340 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Tsoukalas, K., Lahijani, B. V. & Stobbe, S. Impact of transduction scaling laws on nanoelectromechanical systems. Phys. Rev. Lett. 124, 223902 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Killeen, A., Bertrand, T. & Lee, C. F. Polar fluctuations lead to extensile nematic behavior in confluent tissues. Phys. Rev. Lett. 128, 078001 (2022).

    Article 
    ADS 
    MathSciNet 
    PubMed 
    CAS 

    Google Scholar 

  • Wu, J., Lewis, A. H. & Grandl, J. Touch, tension, and transduction–the function and regulation of piezo ion channels. Trends Biochem. Sci. 42, 57–71 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shan, X. et al. Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy. Nat. Photon. 18, 913–921 (2024).

  • Ichbiah, S., Delbary, F., McDougall, A., Dumollard, R. & Turlier, H. Embryo mechanics cartography: inference of 3D force atlases from fluorescence microscopy. Nat. Methods 20, 1989–1999 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bednarkiewicz, A., Chan, E. M., Kotulska, A., Marciniak, L. & Prorok, K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dudek, M. et al. Size‐dependent photon avalanching in Tm3+ doped LiYF4 nano, micro, and bulk crystals. Adv. Opt. Mater. 10, 2201052 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liang, Y. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol. 17, 524–530 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. Tuning phonon energies in lanthanide‐doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion. Angew. Chem. Int. Ed. 62, e202212549 (2023).

    Article 
    CAS 

    Google Scholar 

  • Skripka, A. et al. A generalized approach to photon avalanche upconversion in luminescent nanocrystals. Nano Lett. 23, 7100–7106 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Park, Y. I. et al. Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467–4471 (2009).

    Article 
    CAS 

    Google Scholar 

  • Ostrowski, A. D. et al. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686–2692 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Cohen, B. E. Beyond fluorescence. Nature 467, 407–408 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Tajon, C. A. et al. Photostable and efficient upconverting nanocrystal-based chemical sensors. Opt. Mater. 84, 345–353 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core–shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Johnson, N. J. et al. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 139, 3275–3282 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Szalkowski, M. et al. Predicting the impact of temperature dependent multi-phonon relaxation processes on the photon avalanche behavior in Tm3+:NaYF4 nanoparticles. Opt. Mater. X 12, 100102 (2021).

    CAS 

    Google Scholar 

  • Liu, X. et al. Extreme optical nonlinearity (>500) at room temperature through sublattice reconstruction. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-4183918/v1 (2024).

  • Wisser, M. D. et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Lage, M. M., Moreira, R. L., Matinaga, F. M. & Gesland, J.-Y. Raman and infrared reflectivity determination of phonon modes and crystal structure of Czochralski-grown NaLnF4 (Ln = La, Ce, Pr, Sm, Eu, and Gd) single crystals. Chem. Mater. 17, 4523–4529 (2005).

    Article 
    CAS 

    Google Scholar 

  • van Swieten, T. P. et al. Extending the dynamic temperature range of Boltzmann thermometers. Light Sci. Appl. 11, 343 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casar, J. R., McLellan, C. A., Siefe, C. & Dionne, J. A. Lanthanide-based nanosensors: refining nanoparticle responsiveness for single particle imaging of stimuli. ACS Photon. 8, 3–17 (2020).

    Article 

    Google Scholar 

  • McLellan, C. A. et al. Engineering bright and mechanosensitive alkaline-earth rare-earth upconverting nanoparticles. J. Phys. Chem. Lett. 13, 1547–1553 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kwock, K. W. et al. Surface-sensitive photon avalanche behavior revealed by single-avalanching-nanoparticle imaging. J. Phys. Chem. C 125, 23976–23982 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ribet, S. M. et al. Uncovering the three-dimensional structure of upconverting core–shell nanoparticles with multislice electron ptychography. Appl. Phys. Lett. 124, 240601 (2024).

  • Majak, M., Misiak, M. & Bednarkiewicz, A. The mechanisms behind the extreme susceptibility of photon avalanche emission to quenching. Mater. Horiz. https://doi.org/10.1039/D4MH00362D (2024).

    Article 
    PubMed 

    Google Scholar 

  • Runowski, M. et al. Lifetime nanomanometry—high-pressure luminescence of up-converting lanthanide nanocrystals—SrF2:Yb3+,Er3+. Nanoscale 9, 16030–16037 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dong, H., Sun, L.-D. & Yan, C.-H. Local structure engineering in lanthanide-doped nanocrystals for tunable upconversion emissions. J. Am. Chem. Soc. 143, 20546–20561 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sinatra, N. R. et al. Ultragentle manipulation of delicate structures using a soft robotic gripper. Sci. Robot. 4, eaax5425 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Skripka, A. et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat. Photon. https://doi.org/10.1038/s41566-024-01577-x (2025).

  • Wang, C. et al. Tandem photon avalanches for various nanoscale emitters with optical nonlinearity up to 41st‐order through interfacial energy transfer. Adv. Mater. 36, 2307848 (2024).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, S. & Persson, A. I. Unlocking the dangers of a stiffening brain. Neuron 100, 763–765 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Romani, P., Valcarcel-Jimenez, L., Frezza, C. & Dupont, S. Crosstalk between mechanotransduction and metabolism. Nat. Rev. Mol. Cell Biol. 22, 22–38 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jain, S. et al. The role of single-cell mechanical behaviour and polarity in driving collective cell migration. Nat. Phys. 16, 802–809 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Qiu, Y., Myers, D. R. & Lam, W. A. The biophysics and mechanics of blood from a materials perspective. Nat. Rev. Mater. 4, 294–311 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Helvert, S., Storm, C. & Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20, 8–20 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Firmin, J. et al. Mechanics of human embryo compaction. Nature 629, 646–651 (2024).

  • Yeoman, B. et al. Adhesion strength and contractility enable metastatic cells to become adurotactic. Cell Rep. 34, 108816 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huang, W. et al. Onboard early detection and mitigation of lithium plating in fast-charging batteries. Nat. Commun. 13, 7091 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doux, J. M. et al. Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries. Adv. Energy Mater. 10, 1903253 (2020).

    Article 
    CAS 

    Google Scholar 

  • Brockman, J. M. et al. Mapping the 3D orientation of piconewton integrin traction forces. Nat. Methods 15, 115–118 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Serwane, F. et al. In vivo quantification of spatially varying mechanical properties in developing tissues. Nat. Methods 14, 181–186 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stabley, D. R., Jurchenko, C., Marshall, S. S. & Salaita, K. S. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9, 64–67 (2012).

    Article 
    CAS 

    Google Scholar 

  • Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ringer, P. et al. Multiplexing molecular tension sensors reveals piconewton force gradient across talin-1. Nat. Methods 14, 1090–1096 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Campàs, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vian, A. et al. In situ quantification of osmotic pressure within living embryonic tissues. Nat. Commun. 14, 7023 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chan, E. M. et al. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. Nano Lett. 10, 1874–1885 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • Levy, E. S. et al. Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging. ACS Nano 10, 8423–8433 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wallace, A. Scanning Probe Microscopy. Analytical Geomicrobiology: A Handbook of Instrumental Techniques 121–147 (Cambridge Univ. Press, 2019).

  • Xiao, C. et al. Thickness and structure of adsorbed water layer and effects on adhesion and friction at nanoasperity contact. Colloids Interfaces 3, 55 (2019).

    Article 
    CAS 

    Google Scholar 

  • Fardian-Melamed, N. et al. Infrared nanosensors of pico- to micro-newton forces. Zenodo https://doi.org/10.5281/zenodo.13380752 (2024).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Martin Karplus obituary: theoretical chemist who first simulated proteins using molecular dynamics
    Martin Karplus obituary: theoretical chemist who first simulated proteins using molecular dynamics
    Why the next energy race is for underground hydrogen
    Why the next energy race is for underground hydrogen
    A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion - Nature
    A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion – Nature
    Mars rover makes epic climb to explore some of the oldest rocks in the Solar System
    Mars rover makes epic climb to explore some of the oldest rocks in the Solar System
    Hidden tattoos on mummy skin emerge under a laser’s light
    Hidden tattoos on mummy skin emerge under a laser’s light
    Daily briefing: NIH braces for reform as Trump administration closes in
    Daily briefing: NIH braces for reform as Trump administration closes in
    Headline Central | © 2025 | News