Li2ZrF6-based electrolytes for durable lithium metal batteries – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Lin, D. C., Liu, Y. Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tan, J., Matz, J., Dong, P., Shen, J. F. & Ye, M. X. A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv. Energy Mater. 11, 2100046 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. J. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: review. Chem. Rev. 117, 10403–10473 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Xu, R. et al. Artificial interphases for highly stable lithium metal anode. Matter 1, 317–344 (2019).

    Article 
    MATH 

    Google Scholar 

  • Xiao, J. How lithium dendrites form in liquid batteries. Science 366, 426–427 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lee, M. J. et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article 
    CAS 

    Google Scholar 

  • Luo, Z. et al. Interfacial challenges towards stable Li metal anode. Nano Energy 79, 105507 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hu, A. J. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Liu, S. F. et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. 60, 3661–3671 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Yan, C. et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Li, X. et al. Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 8, 1703002 (2018).

    ADS 

    Google Scholar 

  • Zheng, J. M. et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy 2, 17012 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, C. et al. Phenoxy radical-induced formation of dual-layered protection film for high-rate and dendrite-free lithium-metal anodes. Angew. Chem. Int. Ed. 60, 26718–26724 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, Q. S. et al. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg. Adv. Energy Mater. 10, 1903292 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lin, D. C. et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano Lett. 17, 3731–3737 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, H. S., Lin, D. C., Liu, Y. Y., Li, Y. Z. & Cui, Y. Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF3 framework. Sci. Adv. 3, 170130 (2017).

    Article 

    Google Scholar 

  • Lang, J. L. et al. One-pot solution coating of high quality LiF layer to stabilize Li metal anode. Energy Storage Mater. 16, 85–90 (2019).

    Article 
    MATH 

    Google Scholar 

  • Wang, Y. L. et al. Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes. J. Am. Chem. Soc. 143, 2829–2837 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping-plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article 
    CAS 

    Google Scholar 

  • Yoo, D. J., Yang, S., Kim, K. J. & Choi, J. W. Fluorinated aromatic siluent for high-performance lithium metal batteries. Angew. Chem. Int. Ed. 59, 14869–14876 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, X. Q. et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew. Chem. Int. Ed. 57, 5301–5305 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, X. Q., Cheng, X. B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article 

    Google Scholar 

  • He, M. F., Guo, R., Hobold, G. M., Gao, H. N. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ahmad, Z., Venturi, V., Hafiz, H. & Viswanathan, V. Interfaces in solid electrolyte interphase: implications for lithium-ion batteries. J. Phys. Chem. C 125, 11301–11309 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nat. Energy 5, 534–542 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Heiskanen, S. K., Kim, J. & Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 3, 2322–2333 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Liu, B. et al. High-throughput computational screening of Li-containing fluorides for battery cathode coatings. ACS Sustain. Chem. Eng. 8, 948–957 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Ramasubramanian, A. et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries. J. Phys. Chem. C 123, 10237–10245 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhan, Y. X. et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv. Energy Mater. 12, 2103291 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, L. et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat. Chem. 11, 789–796 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhuang, G. R. V., Xu, K., Yang, H., Jow, T. R. & Ross, P. N. Lithium ethylene dicarbonate identified as the primary product of chemical and electrochemical reduction of EC in 1.2 M LiPF6/EC:EMC electrolyte. J. Phys. Chem. B 109, 17567–17573 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aurbach, D. et al. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 68, 91–98 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Lin, D. C. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626–632 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, D. D., Gao, Y., Xie, C. & Zheng, Z. J. Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Appl. Phys. Rev. 9, 011424 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Meng, J. K. et al. Cotton-derived carbon cloth enabling dendrite-free Li deposition for lithium metal batteries. J. Power Sources 465, 228291 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, X. S. et al. Infiltrating lithium into carbon cloth decorated with zinc oxide arrays for dendrite-free lithium metal anode. Nano Res. 12, 525–529 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Chen, C., Liang, Q. W., Wang, G., Liu, D. D. & Xiong, X. H. Grain-boundary-rich artificial SEI layer for high-rate lithium metal anodes. Adv. Funct. Mater. 32, 2107249 (2022).

    Article 
    CAS 

    Google Scholar 

  • Niu, C. J. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    This manga publisher is using Anthropic’s AI to translate Japanese comics into English
    This manga publisher is using Anthropic’s AI to translate Japanese comics into English
    Reply to: Limitations of ice cores in reconstructing temperature seasonality - Nature
    Reply to: Limitations of ice cores in reconstructing temperature seasonality – Nature
    A bile acid could explain how calorie restriction slows ageing
    A bile acid could explain how calorie restriction slows ageing
    Grass-roots pressure grows to boost support for breastfeeding scientists
    Grass-roots pressure grows to boost support for breastfeeding scientists
    Cannabis studies were informing fundamental neuroscience in the 1970s
    Cannabis studies were informing fundamental neuroscience in the 1970s
    Selective utilization of glucose metabolism guides mammalian gastrulation - Nature
    Selective utilization of glucose metabolism guides mammalian gastrulation – Nature
    Headline Central | © 2025 | News