Two-dimensional non-Hermitian skin effect in an ultracold Fermi gas – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yao, S., Song, F. & Wang, Z. Non-hermitian Chern bands. Phys. Rev. Lett. 121, 136802 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-Hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yokomizo, K. & Murakami, S. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Guo, S., Dong, C., Zhang, F., Hu, J. & Yang, Z. Theoretical prediction of a non-Hermitian skin effect in ultracold-atom systems. Phys. Rev. A 106, L061302 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Zhou, L., Li, H., Yi, W. & Cui, X. Engineering non-Hermitian skin effect with band topology in ultracold gases. Commun. Phys. 5, 252 (2022).

    Article 
    MATH 

    Google Scholar 

  • Li, H. & Yi, W. Dissipative two-dimensional Raman lattice. Phys. Rev. A 107, 013306 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Wang, S.-X. & Wan, S. Duality between the generalized non-Hermitian Hatano-Nelson model in flat space and a Hermitian system in curved space. Phys. Rev. B 106, 075112 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Ju, C.-Y. et al. Einstein’s quantum elevator: Hermitization of non-Hermitian Hamiltonians via a generalized vielbein formalism. Phys. Rev. Res. 4, 023070 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chenwei, L., Ren, Z., Zhengzheng, Z. & Qi, Z. Curving the space by non-Hermiticity. Nat. Commun. 13, 2184 (2022).

    Article 
    MATH 

    Google Scholar 

  • Ryo, O., Ryo, T. & Kazuki, Y. Second-order topological non-Hermitian skin effects. Phys. Rev. B 102, 241202 (2020).

    Article 
    MATH 

    Google Scholar 

  • Kohei, K., Masatoshi, S. & Ken, S. Higher-order non-Hermitian skin effect. Phys. Rev. B 102, 205118 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ikhlef, Y., Jacobsen, J. L. & Saleur, H. Integrable spin chain for the SL(2, R)/U(1) black hole sigma model. Phys. Rev. Lett. 108, 081601 (2012).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Bijan, B. & Sauvik, S. Artificial Hawking radiation, weak pseudo-Hermiticity, and Weyl semimetal blackhole analogy. J. Math. Phys. 63, 122102 (2022).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Ashida, Y., Gong, Z. & Ueda, M. Non-hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Helbig, T. et al. Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits. Nat. Phys. 16, 747–750 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Ezawa, M. Non-Hermitian higher-order topological states in nonreciprocal and reciprocal systems with their electric-circuit realization. Phys. Rev. B 99, 201411 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-Hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl Acad. Sci. USA 117, 29561 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Non-Hermitian skin effect in a non-Hermitian electrical circuit. Research 2021, 5608038 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kozii, V. & Fu, L. Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk Fermi arc due to exceptional point. Phys. Rev. B 109, 235139 (2024).

    Article 
    CAS 

    Google Scholar 

  • Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Öztürk, F. E. et al. Observation of a non-Hermitian phase transition in an optical quantum gas. Science 372, 88–91 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    CAS 
    MATH 

    Google Scholar 

  • Zhang, K., Yang, Z. & Fang, C. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun. 13, 2496 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liang, Q. et al. Dynamic signatures of non-Hermitian skin effect and topology in ultracold atoms. Phys. Rev. Lett. 129, 070401 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Xiao, L. et al. Non-Hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761–766 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Nobuyuki, O., Kohei, K., Ken, S. & Masatoshi, S. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, W. et al. Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B 105, 195131 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zou, D. et al. Observation of hybrid higher-order skin-topological effect in non-Hermitian topolectrical circuits. Nat. Commun. 12, 7201 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shang, C. et al. Experimental identification of the second-order non-Hermitian skin effect with physics-graph-informed machine learning. Adv. Sci. 9, 2202922 (2022).

    Article 
    MATH 

    Google Scholar 

  • Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhou, Q. et al. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun. 14, 4569 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Wang, W., Hu, M., Wang, X., Ma, G. & Ding, K. Experimental realization of geometry-dependent skin effect in a reciprocal two-dimensional lattice. Phys. Rev. Lett. 131, 207201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wan, T., Zhang, K., Li, J., Yang, Z. & Yang, Z. Observation of the geometry-dependent skin effect and dynamical degeneracy splitting. Sci. Bull. 68, 2330–2335 (2023).

    Article 
    MATH 

    Google Scholar 

  • Gopalakrishnan, S. & Gullans, M. J. Entanglement and purification transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett. 126, 170503 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Okuma, N. & Sato, M. Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Phys. Rev. B 103, 085428 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Kawabata, K., Numasawa, T. & Ryu, S. Entanglement phase transition induced by the non-Hermitian skin effect. Phys. Rev. X 13, 021007 (2023).

    CAS 
    MATH 

    Google Scholar 

  • Song, B. et al. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv. 4, eaao4748 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X.-J., Liu, Z.-X. & Cheng, M. Manipulating topological edge spins in a one-dimensional optical lattice. Phys. Rev. Lett. 110, 076401 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Ren, Z. et al. Chiral control of quantum states in non-Hermitian spin-orbit-coupled fermions. Nat. Phys. 18, 385–389 (2022).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, X.-J., Law, K. T. & Ng, T. K. Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett. 112, 086401 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Song, B. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys. 15, 911–916 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Liang, M.-C. et al. Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions. Phys. Rev. Res. 5, L012006 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Yi, Y. & Yang, Z. Non-Hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, H.-Y., Song, F. & Wang, Z. Amoeba formulation of non-Bloch band theory in arbitrary dimensions. Phys. Rev. X 14, 021011 (2024).

    CAS 
    MATH 

    Google Scholar 

  • Zhang, K., Yang, Z. & Sun, K. Edge theory of non-Hermitian skin modes in higher dimensions. Phys. Rev. B 109, 165127 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Asteria, L., Zahn, H. P., Kosch, M. N., Sengstock, K. & Weitenberg, C. Quantum gas magnifier for sub-lattice-resolved imaging of 3D quantum systems. Nature 599, 571–575 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. Y., Hong, J. S. & Liu, X. J. Symmetric non-Hermitian skin effect with emergent nonlocal correspondence. Phys. Rev. B 108, L060204 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Kaluza, T. On the unification problem in physics. Int. J. Mod. Phys. D 27, 1870001 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys. 37, 895–906 (1926).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Klein, O. The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Song, B. et al. Spin-orbit-coupled two-electron Fermi gases of ytterbium atoms. Phys. Rev. A 94, 061604 (2016).

    Article 
    ADS 

    Google Scholar 

  • Murthy, P. et al. Matter-wave Fourier optics with a strongly interacting two-dimensional Fermi gas. Phys. Rev. A 90, 043611 (2014).

    Article 
    ADS 

    Google Scholar 

  • Holten, M. et al. Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas. Nature 606, 287–291 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mao, L., Deng, T. & Zhang, P. Boundary condition independence of non-Hermitian Hamiltonian dynamics. Phys. Rev. B 104, 125435 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion - Nature
    A metagenomic ‘dark matter’ enzyme catalyses oxidative cellulose conversion – Nature
    Autoactive CNGC15 enhances root endosymbiosis in legume and wheat - Nature
    Autoactive CNGC15 enhances root endosymbiosis in legume and wheat – Nature
    OpenAI brings a new web search tool to ChatGPT
    OpenAI brings a new web search tool to ChatGPT
    Toxicity and costs of cancer treatment reduced by deferring CDK4/6 inhibitor use
    Toxicity and costs of cancer treatment reduced by deferring CDK4/6 inhibitor use
    AI decodes the calls of the wild
    AI decodes the calls of the wild
    How fast your brain ages is affected by these 64 genes
    How fast your brain ages is affected by these 64 genes
    Headline Central | © 2025 | News