Copper-dependent halogenase catalyses unactivated C−H bond functionalization – Nature

You May Be Interested In:McLaren accused of failing F1 star as Lando Norris told ‘it will only get worse’


  • Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)–H bonds. Chem. Rev. 121, 14957–15074 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green Sustain. Chem. 31, 100494 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, F., Zhang, X. & Renata, H. Enzymatic C–H functionalizations for natural product synthesis. Curr. Opin. Chem. Biol. 49, 25–32 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Z. et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 54, 69–78 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Hegarty, E., Büchler, J. & Buller, R. M. Halogenases for the synthesis of small molecules. Curr. Opin. Green Sustain. Chem. 41, 100784 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Jiang, Y. & Lewis, J. C. Asymmetric catalysis by flavin-dependent halogenases. Chirality 35, 452–460 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duewel, S. et al. Directed evolution of an FeII-dependent halogenase for asymmetric C(sp3)−H chlorination. ACS Catal. 10, 1272–1277 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. Proc. Natl Acad. Sci. USA 102, 10111–10116 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galonić, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Hillwig, M. L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15, 1009–1016 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kim, C. Y. et al. The chloroalkaloid (−)-acutumine is biosynthesized via a Fe(II)- and 2-oxoglutarate-dependent halogenase in Menispermaceae plants. Nat. Commun. 11, 1867 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhao, C. et al. An Fe2+– and α-ketoglutarate-dependent halogenase acts on nucleotide substrates. Angew. Chem. Int. Ed. 59, 9478–9484 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Krebs, C. & Bollinger, J. M. Non-heme Fe (IV)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wong, S. D. et al. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499, 320–323 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chan, N. H. et al. Non-native anionic ligand binding and reactivity in engineered variants of the Fe(II)- and α-ketoglutarate-dependent oxygenase SadA. Inorg. Chem. 61, 14477–14485 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C−H bonds. Angew. Chem. Int. Ed. 62, e202301370 (2023).

    Article 
    CAS 

    Google Scholar 

  • Vennelakanti, V., Li, G. L. & Kulik, H. J. Why nonheme iron halogenases do not fluorinate C−H bonds: a computational investigation. Inorg. Chem. 62, 19758–19770 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Umemura, M. et al. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genet. Biol. 68, 23–30 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Ye, Y. et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase. Org. Biomol. Chem. 17, 39–43 (2019).

    Article 
    CAS 

    Google Scholar 

  • Kessler, S. C. et al. Victorin, the host-selective cyclic peptide toxin from the oat pathogen Cochliobolus victoriae, is ribosomally encoded. Proc. Natl Acad. Sci. USA 117, 24243–24250 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sogahata, K. et al. Biosynthetic studies of phomopsins unveil posttranslational installation of dehydroamino acids by UstYa family proteins. Angew. Chem. Int. Ed. 60, 25729–25734 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jiang, Y. et al. Biosynthesis of cyclochlorotine: identification of the genes involved in oxidative transformations and intramolecular O, N-transacylation. Org. Lett. 23, 2616–2620 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bat-Erdene, U. et al. Iterative catalysis in the biosynthesis of mitochondrial complex II inhibitors harzianopyridone and atpenin B. J. Am. Chem. Soc. 142, 8550–8554 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Nagano, N. et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet. Biol. 86, 58–70 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Umemura, M., Kuriiwa, K., Tamano, K. & Kawarabayasi, Y. Ustiloxin biosynthetic machinery is not compatible between Aspergillus flavus and Ustilaginoidea virens. Fungal Genet. Biol. 143, 103434 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kessler, S. C. & Chooi, Y. H. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Nat. Prod. Rep. 39, 222–230 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Von Wachenfeldt, C., Richardson, T. H., Cosme, J. & Johnson, E. F. Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch. Biochem. Biophys. 339, 107–114 (1997).

    Article 

    Google Scholar 

  • Otsuka, T., Takase, S., Terano, H. & Okuhara, M. New angiogenesis inhibitors, WF-16775 A1 and A2. J. Antibiot. 45, 1970–1973 (1992).

    Article 
    CAS 

    Google Scholar 

  • Kawada, M., Momose, I., Someno, T., Tsujiuchi, G. & Ikeda, D. New atpenins, NBRI23477 A and B, inhibit the growth of human prostate cancer cells. J. Antibiot. 62, 243–246 (2009).

    Article 
    CAS 

    Google Scholar 

  • Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Mario Amzel, L. Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase. Nat. Struct. Biol. 6, 976–983 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klinman, J. P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: Resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281, 3013–3016 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Matthews, M. L. et al. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl Acad. Sci. USA 106, 17723–17728 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, H. R., Masento, M. S., Taylor, G. W., Jermyn, K. A. & Kay, R. R. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem. J 249, 903–906 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lima, D. B. et al. Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat. Protoc. 13, 431–458 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Peisach, J. & Blumberg, W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch. Biochem. Biophys. 165, 691–708 (1974).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304, 864–867 (2004).

  • Mydy, L. S. et al. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat. Chem. Biol. 20, 530–540 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gkotsi, D. S. et al. A marine viral halogenase that iodinates diverse substrates. Nat. Chem. 11, 1091–1097 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jiang, Y., Kim, A., Olive, C. & Lewis, J. C. Selective C–H halogenation of alkenes and alkynes using flavin‐dependent halogenases. Angew. Chem. Int. Ed. 63, e2023178 (2024).

    Google Scholar 

  • Zhao, Q. et al. Engineering nonhaem iron enzymes for enantioselective C(sp3)−F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhao, L.-P. et al. Biocatalytic enantioselective C(sp3)–H fluorination enabled by directed evolution of non-haem iron enzymes. Nat. Synth. 3, 967–975 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Omura, S. et al. Atpenins, new antifungal antibiotics produced by Penicillium sp. production, isolation, physico-chemical and biological properties. J. Antibiot. 41, 1769–1773 (1988).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Kumagai, H. et al. The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot. 43, 1553–1558 (1990).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lu, S. et al. Mapping native disulfide bonds at a proteome scale. Nat. Methods 12, 329–331 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Petasis, D. T. & Hendrich, M. P. Quantitative Interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 563, 171–208 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    The sequence–structure–function relationship of intrinsic ERα disorder - Nature
    The sequence–structure–function relationship of intrinsic ERα disorder – Nature
    How to navigate uncertainty in an unpredictable world
    How to navigate uncertainty in an unpredictable world
    How flight helped bats become invincible to viruses
    How flight helped bats become invincible to viruses
    A dormant overmassive black hole in the early Universe - Nature
    A dormant overmassive black hole in the early Universe – Nature
    ‘Open source’ AI isn’t truly open — here’s how researchers can reclaim the term
    ‘Open source’ AI isn’t truly open — here’s how researchers can reclaim the term
    Women are better than men at science job interviews
    Women are better than men at science job interviews
    Headline Central | © 2025 | News