Copper-dependent halogenase catalyses unactivated C−H bond functionalization – Nature

Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).
Google Scholar
Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).
Google Scholar
Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)–H bonds. Chem. Rev. 121, 14957–15074 (2021).
Google Scholar
Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green Sustain. Chem. 31, 100494 (2021).
Google Scholar
Li, F., Zhang, X. & Renata, H. Enzymatic C–H functionalizations for natural product synthesis. Curr. Opin. Chem. Biol. 49, 25–32 (2019).
Google Scholar
Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).
Google Scholar
Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).
Google Scholar
Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).
Google Scholar
Xu, Z. et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 54, 69–78 (2014).
Google Scholar
Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).
Google Scholar
Hegarty, E., Büchler, J. & Buller, R. M. Halogenases for the synthesis of small molecules. Curr. Opin. Green Sustain. Chem. 41, 100784 (2023).
Google Scholar
Jiang, Y. & Lewis, J. C. Asymmetric catalysis by flavin-dependent halogenases. Chirality 35, 452–460 (2023).
Google Scholar
Duewel, S. et al. Directed evolution of an FeII-dependent halogenase for asymmetric C(sp3)−H chlorination. ACS Catal. 10, 1272–1277 (2020).
Google Scholar
Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. Proc. Natl Acad. Sci. USA 102, 10111–10116 (2005).
Google Scholar
Galonić, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).
Google Scholar
Hillwig, M. L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923 (2014).
Google Scholar
Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15, 1009–1016 (2019).
Google Scholar
Kim, C. Y. et al. The chloroalkaloid (−)-acutumine is biosynthesized via a Fe(II)- and 2-oxoglutarate-dependent halogenase in Menispermaceae plants. Nat. Commun. 11, 1867 (2020).
Google Scholar
Zhao, C. et al. An Fe2+– and α-ketoglutarate-dependent halogenase acts on nucleotide substrates. Angew. Chem. Int. Ed. 59, 9478–9484 (2020).
Google Scholar
Krebs, C. & Bollinger, J. M. Non-heme Fe (IV)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).
Google Scholar
Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).
Google Scholar
Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).
Google Scholar
Wong, S. D. et al. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499, 320–323 (2013).
Google Scholar
Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).
Google Scholar
Chan, N. H. et al. Non-native anionic ligand binding and reactivity in engineered variants of the Fe(II)- and α-ketoglutarate-dependent oxygenase SadA. Inorg. Chem. 61, 14477–14485 (2022).
Google Scholar
Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C−H bonds. Angew. Chem. Int. Ed. 62, e202301370 (2023).
Google Scholar
Vennelakanti, V., Li, G. L. & Kulik, H. J. Why nonheme iron halogenases do not fluorinate C−H bonds: a computational investigation. Inorg. Chem. 62, 19758–19770 (2023).
Google Scholar
Umemura, M. et al. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genet. Biol. 68, 23–30 (2014).
Google Scholar
Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).
Google Scholar
Ye, Y. et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase. Org. Biomol. Chem. 17, 39–43 (2019).
Google Scholar
Kessler, S. C. et al. Victorin, the host-selective cyclic peptide toxin from the oat pathogen Cochliobolus victoriae, is ribosomally encoded. Proc. Natl Acad. Sci. USA 117, 24243–24250 (2020).
Google Scholar
Sogahata, K. et al. Biosynthetic studies of phomopsins unveil posttranslational installation of dehydroamino acids by UstYa family proteins. Angew. Chem. Int. Ed. 60, 25729–25734 (2021).
Google Scholar
Jiang, Y. et al. Biosynthesis of cyclochlorotine: identification of the genes involved in oxidative transformations and intramolecular O, N-transacylation. Org. Lett. 23, 2616–2620 (2021).
Google Scholar
Bat-Erdene, U. et al. Iterative catalysis in the biosynthesis of mitochondrial complex II inhibitors harzianopyridone and atpenin B. J. Am. Chem. Soc. 142, 8550–8554 (2020).
Google Scholar
Nagano, N. et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet. Biol. 86, 58–70 (2016).
Google Scholar
Umemura, M., Kuriiwa, K., Tamano, K. & Kawarabayasi, Y. Ustiloxin biosynthetic machinery is not compatible between Aspergillus flavus and Ustilaginoidea virens. Fungal Genet. Biol. 143, 103434 (2020).
Google Scholar
Kessler, S. C. & Chooi, Y. H. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Nat. Prod. Rep. 39, 222–230 (2022).
Google Scholar
Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).
Google Scholar
Von Wachenfeldt, C., Richardson, T. H., Cosme, J. & Johnson, E. F. Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch. Biochem. Biophys. 339, 107–114 (1997).
Google Scholar
Otsuka, T., Takase, S., Terano, H. & Okuhara, M. New angiogenesis inhibitors, WF-16775 A1 and A2. J. Antibiot. 45, 1970–1973 (1992).
Google Scholar
Kawada, M., Momose, I., Someno, T., Tsujiuchi, G. & Ikeda, D. New atpenins, NBRI23477 A and B, inhibit the growth of human prostate cancer cells. J. Antibiot. 62, 243–246 (2009).
Google Scholar
Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).
Google Scholar
Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Mario Amzel, L. Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase. Nat. Struct. Biol. 6, 976–983 (1999).
Google Scholar
Klinman, J. P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: Resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281, 3013–3016 (2006).
Google Scholar
Matthews, M. L. et al. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl Acad. Sci. USA 106, 17723–17728 (2009).
Google Scholar
Morris, H. R., Masento, M. S., Taylor, G. W., Jermyn, K. A. & Kay, R. R. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem. J 249, 903–906 (1988).
Google Scholar
Lima, D. B. et al. Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat. Protoc. 13, 431–458 (2018).
Google Scholar
Peisach, J. & Blumberg, W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch. Biochem. Biophys. 165, 691–708 (1974).
Google Scholar
Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304, 864–867 (2004).
Mydy, L. S. et al. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat. Chem. Biol. 20, 530–540 (2024).
Google Scholar
Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).
Google Scholar
Gkotsi, D. S. et al. A marine viral halogenase that iodinates diverse substrates. Nat. Chem. 11, 1091–1097 (2019).
Google Scholar
Jiang, Y., Kim, A., Olive, C. & Lewis, J. C. Selective C–H halogenation of alkenes and alkynes using flavin‐dependent halogenases. Angew. Chem. Int. Ed. 63, e2023178 (2024).
Zhao, Q. et al. Engineering nonhaem iron enzymes for enantioselective C(sp3)−F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).
Google Scholar
Zhao, L.-P. et al. Biocatalytic enantioselective C(sp3)–H fluorination enabled by directed evolution of non-haem iron enzymes. Nat. Synth. 3, 967–975 (2024).
Google Scholar
Omura, S. et al. Atpenins, new antifungal antibiotics produced by Penicillium sp. production, isolation, physico-chemical and biological properties. J. Antibiot. 41, 1769–1773 (1988).
Google Scholar
Kumagai, H. et al. The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot. 43, 1553–1558 (1990).
Google Scholar
Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).
Google Scholar
Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).
Google Scholar
Lu, S. et al. Mapping native disulfide bonds at a proteome scale. Nat. Methods 12, 329–331 (2015).
Google Scholar
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
Google Scholar
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
Google Scholar
Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).
Google Scholar
Petasis, D. T. & Hendrich, M. P. Quantitative Interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 563, 171–208 (2015).
Google Scholar