Record sea surface temperature jump in 2023–2024 unlikely but not unexpected – Nature

Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).
Google Scholar
Schmidt, G. Climate models can’t explain 2023’s huge heat anomaly—we could be in uncharted territory. Nature 627, 467–467 (2024).
Google Scholar
Copernicus: 2023 is the hottest year on record, with global temperatures close to the 1.5°C limit. ECMWF https://climate.copernicus.eu/copernicus-2023-hottest-year-record (2024).
Poynting, M. & Rivault, E. 2023 confirmed as world’s hottest year on record. BBC News https://www.bbc.com/news/science-environment-67861954 (2024).
Samset, B. H., Lund, M. T., Fuglestvedt, J. S. & Wilcox, L. J. 2023 temperatures reflect steady global warming and internal sea surface temperature variability. Commun. Earth Environ. 5, 460 (2024).
Google Scholar
Raghuraman, S. P. et al. The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmos. Chem. Phys. 24, 11275–11283 (2024).
Google Scholar
Esper, J., Torbenson, M. & Büntgen, U. 2023 summer warmth unparalleled over the past 2,000 years. Nature 631, 94–97 (2024).
Cattiaux, J., Ribes, A. & Cariou, E. How extreme were daily global temperatures in 2023 and early 2024? Geophys. Res. Lett. 51, e2024GL110531 (2024).
Google Scholar
Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Change 4, 161–163 (2014).
Google Scholar
Sillmann, J., Donat, M. G., Fyfe, J. C. & Zwiers, F. W. Observed and simulated temperature extremes during the recent warming hiatus. Environ. Res. Lett. 9, 064023 (2014).
Google Scholar
Kuhlbrodt, T., Swaminathan, R., Ceppi, P. & Wilder, T. A glimpse into the future: the 2023 ocean temperature and sea ice extremes in the context of longer-term climate change. Bull. Am. Meteorol. Soc. 105, E474–E485 (2024).
Google Scholar
Min, S.-K. Human influence can explain the widespread exceptional warmth in 2023. Commun. Earth Environ. 5, 215 (2024).
Google Scholar
McGrath, M., Poynting, M. & Rowlatt, J. Climate change: world’s oceans suffer from record-breaking year of heat. BBC News https://www.bbc.com/news/science-environment-68921215 (2024).
Erdenesanaa, D. Ocean heat has shattered records for more than a year. What’s happening? The New York Times https://www.nytimes.com/2024/04/10/climate/ocean-heat-records.html (2024).
Goessling, H. F., Rackow, T. & Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science 387, 68–73 (2025).
Google Scholar
Capotondi, A. et al. A global overview of marine heatwaves in a changing climate. Commun. Earth Environ. 5, 701 (2024).
Google Scholar
Li, C., Burger, F. A., Raible, C. C. & Frölicher, T. L. Observed regional impacts of marine heatwaves on sea–air CO2 exchange. Geophys. Res. Lett. 51, e2024GL110379 (2024).
Google Scholar
Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
Google Scholar
Saranya, J. S., Roxy, M. K., Dasgupta, P. & Anand, A. Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Ocean. 127, e2021JC017427 (2022).
Google Scholar
Singh, V. K., Roxy, M. K. & Deshpande, M. Role of warm ocean conditions and the MJO in the genesis and intensification of extremely severe cyclone Fani. Sci. Rep. 11, 3607 (2021).
Google Scholar
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).
Google Scholar
Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: global issues and opportunities. Science 374, eabj3593 (2021).
Google Scholar
Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. 7, eabh0895 (2021).
Google Scholar
Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).
Google Scholar
IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Google Scholar
Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
Huang, B. et al. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA National Centers for Environmental Information https://doi.org/10.7289/V5T72FNM (2017).
Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).
Google Scholar
Berthou, S. et al. Exceptional atmospheric conditions in June 2023 generated a northwest European marine heatwave which contributed to breaking land temperature records. Commun. Earth Environ. 5, 287 (2024).
Google Scholar
Yuan, T. et al. Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming. Commun. Earth Environ. 5, 281 (2024).
Google Scholar
Tokarska Katarzyna, B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2021).
Google Scholar
Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).
Google Scholar
Deser, C., Alexander, M. A., Xie, S.-P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2009).
Google Scholar
Christian, J. R. et al. Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE. Geosci. Model Dev. 15, 4393–4424 (2022).
Google Scholar
Swart, N. C. et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 12, 4823–4873 (2019).
Google Scholar
Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).
Google Scholar
Burger, F. A., Terhaar, J. & Frölicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).
Google Scholar
Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, e2019MS001916 (2020).
Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).
Google Scholar
Huang, B. et al. Understanding differences in sea surface temperature intercomparisons. J. Atmos. Ocean. Technol. 40, 455–473 (2023).
Google Scholar
Embury, O. et al. Satellite-based time-series of sea-surface temperature since 1980 for climate applications. Sci. Data 11, 326 (2024).
Google Scholar
Enting, I. G. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. Atmos. 92, 10977–10984 (1987).
Google Scholar
Minière, A., von Schuckmann, K. Sallée, J.-B. & Vogt, L. Robust acceleration of Earth system heating observed over the past six decades. Sci. Rep. 13, 22975 (2023).
Casella., G. & Berger, R. L. Statistical Inference (Duxbury, 2002).
Kenney, J. F. & Keeping, E. S. Mathematics of Statistics Part 2 2nd edn (Van Nostrand, 1951).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007).
Google Scholar
RCP Database (IIASA, 2009).
SSP Database (IIASA, 2018).
Wilks, D. S. Statistical Methods in the Atmospheric Sciences (Elsevier, 2019); https://doi.org/10.1016/C2017-0-03921-6.
Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).
Google Scholar
Terhaar, J. Drivers of decadal trends in the ocean carbon sink in the past, present, and future in Earth system models. Biogeosciences 21, 3903–3926 (2024).
Google Scholar
Fay, A. R. & McKinley, G. A. Global open-ocean biomes: mean and temporal variability. Earth Syst. Sci. Data 6, 273–284 (2014).
Google Scholar
Terhaar, J., Vogt, L. & Burger, F. A. Code for the analysis about record-shattering jumps in sea surface temperatures. Zenodo https://doi.org/10.5281/zenodo.14618176 (2025).
Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).
Google Scholar
Tatebe, H. et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).
Google Scholar
Bi, D. et al. Configuration and spin-up of ACCESS-CM2, the new generation Australian Community Climate and Earth System Simulator Coupled Model. J. South. Hemisph. Earth Syst. Sci. 70, 225–251 (2020).
Google Scholar
Ziehn, T. et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214 (2020).
Google Scholar
Wu, T. et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6. Geosci. Model Dev. 12, 1573–1600 (2019).
Google Scholar
Zhang, H. et al. Description and climate simulation performance of CAS-ESM Version 2. J. Adv. Model. Earth Sys. 12, e2020MS002210 (2020).
Lin, Y. et al. Community Integrated Earth System Model (CIESM): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002036 (2020).
Google Scholar
Cherchi, A. et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 11, 185–209 (2019).
Google Scholar
Lovato, T. et al. CMIP6 simulations with the CMCC Earth System Model (CMCC-ESM2). J. Adv. Model. Earth Syst. 14, e2021MS002814 (2022).
Google Scholar
Voldoire, A. et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 11, 2177–2213 (2019).
Google Scholar
Séférian, R. et al. Evaluation of CNRM Earth System Model, CNRM-ESM2-1: role of earth system processes in present-day and future climate. J. Adv. Model. Earth Syst. 11, 4182–4227 (2019).
Google Scholar
Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).
Google Scholar
HE, B. et al. CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmos. Ocean. Sci. Lett. 13, 582–588 (2020).
Google Scholar
Li, L. et al. The Flexible Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3): description and evaluation. J. Adv. Model. Earth Syst. 12, e2019MS002012 (2020).
Google Scholar
Bao, Y., Song, Z. & Qiao, F. FIO-ESM Version 2.0: model description and evaluation. J. Geophys. Res. Ocean. 125, e2019JC016036 (2020).
Google Scholar
Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
Kelley, M. et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).
Google Scholar
Andrews, M. B. et al. Historical simulations with HadGEM3-GC3.1 for CMIP6. J. Adv. Model. Earth Syst. 12, e2019MS001995 (2020).
Google Scholar
Volodin, E. M., Diansky, N. A. & Gusev, A. V. Simulation and prediction of climate changes in the 19th to 21st centuries with the Institute of Numerical Mathematics, Russian Academy of Sciences, model of the Earth’s climate system. Izv. Atmos. Ocean. Phys. 49, 347–366 (2013).
Google Scholar
Volodin, E. & Gritsun, A. Simulation of observed climate changes in 1850–2014 with climate model INM-CM5. Earth Syst. Dyn. 9, 1235–1242 (2018).
Google Scholar
Hajima, T. et al. Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geosci. Model Dev. 13, 2197–2244 (2020).
Google Scholar
Gutjahr, O. et al. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 12, 3241–3281 (2019).
Google Scholar
Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).
Google Scholar
Yukimoto, S. et al. The Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0: description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn Ser. II 97, 931–965 (2019).
Google Scholar
Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).
Google Scholar