A human brain map of mitochondrial respiratory capacity and diversity – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Shulman, R. G., Hyder, F. & Rothman, D. L. Baseline brain energy supports the state of consciousness. Proc. Natl Acad. Sci. USA 106, 11096–11101 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhang, D. & Raichle, M. E. Disease and the brain’s dark energy. Nat. Rev. Neurol. 6, 15–28 (2010).

    PubMed 
    MATH 

    Google Scholar 

  • Minhas, P. S. et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature 590, 122–128 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Daniels, T. E., Olsen, E. M. & Tyrka, A. R. Stress and psychiatric disorders: the role of mitochondria. Annu. Rev. Clin. Psychol. 16, 165–186 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rosenberg, A. M. et al. Brain mitochondrial diversity and network organization predict anxiety-like behavior in male mice. Nat. Commun. 14, 4726 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Fecher, C. et al. Cell-type-specific profiling of brain mitochondria reveals functional and molecular diversity. Nat. Neurosci. 22, 1731–1742 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tomasi, D., Wang, G.-J. & Volkow, N. D. Energetic cost of brain functional connectivity. Proc. Natl Acad. Sci. USA 110, 13642–13647 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • He, X. et al. Uncovering the biological basis of control energy: structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy. Sci. Adv. 8, eabn2293 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, Y. et al. A 3D atlas of functional human brain energetic connectome based on neuropil distribution. Cereb. Cortex 33, 3996–4012 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Blazey, T. et al. Quantitative positron emission tomography reveals regional differences in aerobic glycolysis within the human brain. J. Cereb. Blood Flow Metab. 39, 2096–2102 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tsuchida, A. et al. The MRi-Share database: brain imaging in a cross-sectional cohort of 1870 university students. Brain Struct. Funct. 226, 2057–2085 (2021).

    PubMed 
    MATH 

    Google Scholar 

  • Castrillon, G. et al. An energy costly architecture of neuromodulators for human brain evolution and cognition. Sci. Adv. 9, eadi7632 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cui, Z. et al. Optimization of energy state transition trajectory supports the development of executive function during youth. eLife 9, e53060 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinotsis, D. A., Fridman, G. & Miller, E. K. Cytoelectric coupling: electric fields sculpt neural activity and ‘tune’ the brain’s infrastructure. Prog. Neurobiol. 226, 102465 (2023).

    PubMed 

    Google Scholar 

  • Strasser, A. et al. Glutamine-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology 45, 2048–2057 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Padamsey, Z. & Rochefort, N. L. Paying the brain’s energy bill. Curr. Opin. Neurobiol. 78, 102668 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pekkurnaz, G. & Wang, X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat. Metab. 4, 802–812 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Monzel, A. S., Enríquez, J. A. & Picard, M. Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat. Metab. 5, 546–562 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Picard, M. & Shirihai, O. S. Mitochondrial signal transduction. Cell Metab. 34, 1620–1653 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Styr, B. et al. Mitochondrial regulation of the hippocampal firing rate set point and seizure susceptibility. Neuron 102, 1009–1024 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kwon, S.-K. et al. LKB1 regulates mitochondria-dependent presynaptic calcium clearance and neurotransmitter release properties at excitatory synapses along cortical axons. PLoS Biol. 14, e1002516 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin, M.-M., Liu, N., Qin, Z.-H. & Wang, Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol. Sin. 43, 2439–2447 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joshi, A. U. et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci. 22, 1635–1648 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hara, Y. et al. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc. Natl Acad. Sci. USA 111, 486–491 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sharpley, M. S. et al. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343 (2012).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hollis, F. et al. Mitochondrial function in the brain links anxiety with social subordination. Proc. Natl Acad. Sci. USA 112, 15486–15491 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gebara, E. et al. Mitofusin-2 in the nucleus accumbens regulates anxiety and depression-like behaviors through mitochondrial and neuronal actions. Biol. Psychiatry 89, 1033–1044 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Huang, S. C. et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238, E69–E82 (1980).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Theriault, J. E. et al. A functional account of stimulation-based aerobic glycolysis and its role in interpreting BOLD signal intensity increases in neuroimaging experiments. Neurosci. Biobehav. Rev. 153, 105373 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • van Zijl, P. C. M. & Yadav, N. N. Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn. Reson. Med. 65, 927–948 (2011).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Brennan, B. P., Rauch, S. L., Jensen, J. E. & Pope, H. G. A critical review of magnetic resonance spectroscopy studies of obsessive–compulsive disorder. Biol. Psychiatry 73, 24–31 (2013).

    PubMed 

    Google Scholar 

  • Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353–360 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rae, C. D. et al. Brain energy metabolism: a roadmap for future research. J. Neurochem. 168, 910–954 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Amunts, K. et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science 340, 1472–1475 (2013).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Howard, A. F. D. et al. An open resource combining multi-contrast MRI and microscopy in the macaque brain. Nat. Commun. 14, 4320 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Alkemade, A. et al. A unified 3D map of microscopic architecture and MRI of the human brain. Sci. Adv. 8, eabj7892 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Osto, C. et al. Measuring mitochondrial respiration in previously frozen biological samples. Curr. Protoc. Cell Biol. 89, e116 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Acin-Perez, R. et al. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J. 39, e104073 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Picard, M. et al. A mitochondrial health index sensitive to mood and caregiving stress. Biol. Psychiatry 84, 9–17 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Finnegan, J. M. et al. Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells. J. Neurochem. 66, 1914–1923 (1996).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Haber, S. N. Neurotransmitters in the human and nonhuman primate basal ganglia. Hum. Neurobiol. 5, 159–168 (1986).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bolam, J. P. & Pissadaki, E. K. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov. Disord. 27, 1478–1483 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grillner, S. & Robertson, B. The basal ganglia over 500 million years. Curr. Biol. 26, R1088–R1100 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Darwin, C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life 1st edn (John Murray, 1859).

  • de Sousa, A. A. et al. From fossils to mind. Commun. Biol. 6, 636 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Friedrich, P. et al. Imaging evolution of the primate brain: the next frontier? NeuroImage 228, 117685 (2021).

    PubMed 
    MATH 

    Google Scholar 

  • Pandya, D., Petrides, M. & Cipolloni, P. B. Cerebral Cortex: Architecture, Connections, and the Dual Origin Concept (Oxford Univ. Press, 2015).

  • Düking, T. et al. Ketogenic diet uncovers differential metabolic plasticity of brain cells. Sci. Adv. 8, eabo7639 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Amunts, K., Mohlberg, H., Bludau, S. & Zilles, K. Julich-Brain: a 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369, 988–992 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tran, M. N. et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 109, 3088–3103 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Slyper, M. et al. A single-cell and single-nucleus RNA-seq toolbox for fresh and frozen human tumors. Nat. Med. 26, 792–802 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hocking, R. R. A biometrics invited paper. The analysis and selection of variables in linear regression. Biometrics 32, 1–49 (1976).

    MathSciNet 
    MATH 

    Google Scholar 

  • Zhang, H., Schneider, T., Wheeler-Kingshott, C. A. & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000–1016 (2012).

    PubMed 
    MATH 

    Google Scholar 

  • Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Croxson, P. L., Forkel, S. J., Cerliani, L. & Thiebaut de Schotten, M. Structural variability across the primate brain: a cross-species comparison. Cereb. Cortex 28, 3829–3841 (2018).

    PubMed 

    Google Scholar 

  • Cheng, W., Zhang, Y. & He, L. MRI features of stroke-like episodes in mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. Front. Neurol. 13, 843386 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forkel, S. J. et al. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks. Brain J. Neurol. 137, 2027–2039 (2014).

    MATH 

    Google Scholar 

  • Pontzer, H. et al. Metabolic acceleration and the evolution of human brain size and life history. Nature 533, 390–392 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Moore, H. L., Blain, A. P., Turnbull, D. M. & Gorman, G. S. Systematic review of cognitive deficits in adult mitochondrial disease. Eur. J. Neurol. 27, 3–17 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Klein, H.-U. et al. Characterization of mitochondrial DNA quantity and quality in the human aged and Alzheimer’s disease brain. Mol. Neurodegener. 16, 75 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bose, A. & Beal, M. F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 139, 216–231 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Borsche, M., Pereira, S. L., Klein, C. & Grünewald, A. Mitochondria and Parkinson’s disease: clinical, molecular, and translational aspects. J. Park. Dis. 11, 45–60 (2021).

    CAS 

    Google Scholar 

  • Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. NeuroImage 80, 62–79 (2013).

    PubMed 
    MATH 

    Google Scholar 

  • Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kelly, T. M. & Mann, J. J. Validity of DSM-III-R diagnosis by psychological autopsy: a comparison with clinician ante-mortem diagnosis. Acta Psychiatr. Scand. 94, 337–343 (1996).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mai, J. K., Majtanik, M. & Paxinos, G. Atlas Of The Human Brain 4th edn (Elsevier, 2016).

  • Boldrini, M. et al. Resilience is associated with larger dentate gyrus, while suicide decedents with major depressive disorder have fewer granule neurons. Biol. Psychiatry 85, 850–862 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fleming, S. J. et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods 20, 1323–1335 (2023).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    CAS 
    MATH 

    Google Scholar 

  • Catani, M. et al. Short frontal lobe connections of the human brain. Cortex 48, 273–291 (2012).

    PubMed 
    MATH 

    Google Scholar 

  • Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates and atlases. NeuroImage 62, 911–922 (2012).

    PubMed 

    Google Scholar 

  • Van Essen, D. C. & Dierker, D. L. Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209–225 (2007).

    PubMed 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    A little bird flies high thanks to mighty mitochondria
    A little bird flies high thanks to mighty mitochondria
    Microbial warfare brought us CRISPR. What big breakthroughs could be next?
    Microbial warfare brought us CRISPR. What big breakthroughs could be next?
    Are the Trump team’s actions affecting your research? How to contact Nature
    Are the Trump team’s actions affecting your research? How to contact Nature
    AI could help people find common ground during deliberations
    The Download: AI for debates, and what to know about the Oropouche virus
    Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis - Nature
    Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis – Nature
    Sulfide-rich continental roots at cratonic margins formed by carbonated melts - Nature
    Sulfide-rich continental roots at cratonic margins formed by carbonated melts – Nature
    Headline Central | © 2025 | News