A prospective code for value in the serotonin system – Nature

Dayan, P. & Huys, Q. Serotonin’s many meanings elude simple theories. eLife 4, e07390 (2015).
Google Scholar
Liu, Z., Lin, R. & Luo, M. Reward contributions to serotonergic functions. Annu. Rev. Neurosci. 43, 141–162 (2020).
Google Scholar
Matias, S., Lottem, E., Dugué, G. P. & Mainen, Z. F. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 6, e20552 (2017).
Google Scholar
Paquelet, G. E. et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron 110, 2664–2679 (2022).
Google Scholar
Grossman, C. D., Bari, B. A. & Cohen, J. Y. Serotonin neurons modulate learning rate through uncertainty. Curr. Biol. 32, 586–599 (2022).
Google Scholar
Sutton, R. S. & Barto, A. G. Reinforcement Learning 2nd edn (MIT, 2018).
Harkin, E. F. et al. Temporal derivative computation in the dorsal raphe network revealed by an experimentally-driven augmented integrate-and-fire modeling framework. eLife 12, e72951 (2023).
Google Scholar
Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).
Google Scholar
Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).
Google Scholar
Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
Google Scholar
Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37, 8863–8875 (2017).
Google Scholar
Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487 (2018).
Google Scholar
Feng, Y.-Y., Bromberg-Martin, E. S. & Monosov, I. E. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep. 43, 114341 (2024).
Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9, 319–335 (1986).
Deakin, J. F. W. & Graeff, F. G. 5-HT and mechanisms of defence. J. Psychopharmacol. 5, 305–315 (1991).
Google Scholar
Jacobs, B. & Fornal, C. in Psychopharmacology: 4th Generation of Progress (eds Bloom, F.E. & Kupfer D.J.) 461–469 (Raven, 1995).
Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).
Google Scholar
Dayan, P. & Huys, Q. Serotonin in affective control. Annu. Rev. Neurosci. 32, 95–126 (2009).
Google Scholar
Boureau, Y.-L. & Dayan, P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36, 74–97 (2011).
Google Scholar
Cools, R., Nakamura, K. & Daw, N. D. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36, 98–113 (2011).
Google Scholar
Azmitia, E. C. in Handbook of the Behavioral Neurobiology of Serotonin Vol. 31 (eds Müller, C. P. & Cunningham, K. A.) 3–22 (Elsevier, 2020).
Shine, J. M. et al. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 145, 2967–2981 (2022).
Google Scholar
Koolschijn, R. S. et al. Resources, costs and long-term value: an integrative perspective on serotonin and meta-decision making. Curr. Opin. Behav. Sci. 60, 101453 (2024).
Luo, M., Li, Y. & Zhong, W. Do dorsal raphe 5-HT neurons encode ‘beneficialness’? Neurobiol. Learn. Mem. 135, 40–49 (2016).
Google Scholar
Spring, M. G. & Nautiyal, K. M. Striatal serotonin release signals reward value. J. Neurosci. 44, e0602242024 (2024).
Google Scholar
Haider, P. et al. Latent equilibrium: a unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Adv. Neural Inf. Process. Syst. 34, 17839–17851 (2021).
Google Scholar
Srinivasan, M., Laughlin, S. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. 216, 427–459 (1982).
Google Scholar
Spratling, M. A review of predictive coding algorithms. Brain Cognition 112, 92–97 (2017).
Google Scholar
Chalk, M., Marre, O. & Tkačik, G. Toward a unified theory of efficient, predictive, and sparse coding. Proc. Natl Acad. Sci. USA 115, 186–191 (2018).
Google Scholar
Masani, K., Vette, A. & Popovic, M. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23, 164–172 (2006).
Google Scholar
De Jong, J. W., Liang, Y., Verharen, J. P. H., Fraser, K. M. & Lammel, S. State and rate-of-change encoding in parallel mesoaccumbal dopamine pathways. Nat. Neurosci. 27, 309–318 (2024).
Google Scholar
Lundstrom, B. N., Higgs, M. H., Spain, W. J. & Fairhall, A. L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).
Google Scholar
Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).
Google Scholar
Baleanu, D., Fernandez, A. & Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 8, 360 (2020).
Google Scholar
dos Santos Matias, S. P. Dynamics of Serotonergic Neurons Revealed by Fiber Photometry. PhD thesis, Univ. NOVA de Lisboa (2016).
Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).
Google Scholar
Kobayashi, S. & Schultz, W. Influence of reward delays on responses of dopamine neurons. J. Neurosci. 28, 7837–7846 (2008).
Google Scholar
Masset, P. et al. Multi-timescale reinforcement learning in the brain. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566754 (2023).
Sousa, M. et al. Dopamine neurons encode a multidimensional probabilistic map of future reward. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566727 (2023).
Miyazaki, K., Miyazaki, K. W. & Doya, K. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J. Neurosci. 31, 469–479 (2011).
Google Scholar
Cohen, J., Grossman, C. & Bari, B. Serotonin neurons modulate learning rate through uncertainty. Dryad https://doi.org/10.5061/dryad.cz8w9gj4s (2021).
Aghajanian, G. & Vandermaelen, C. Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effects of LSD. Brain Res. 238, 463–469 (1982).
Google Scholar
Vandermaelen, C. & Aghajanian, G. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289, 109–119 (1983).
Google Scholar
Lynn, M. B. et al. A slow 5-HT1AR-mediated recurrent inhibitory network in raphe computes contextual value through synaptic facilitation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.31.506056 (2022).
Miyazaki, K. et al. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat. Commun. 9, 2048 (2018).
Google Scholar
Okaty, B. W., Commons, K. G. & Dymecki, S. M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 20, 397–424 (2019).
Google Scholar
Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).
Google Scholar
Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B. & Daw, N. D. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat. Neurosci. 27, 1574–1586 (2024).
Google Scholar
Calizo, L. H. et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61, 524–543 (2011).
Google Scholar
Fernandez, S. P. et al. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct. Funct. 221, 4007–4025 (2016).
Google Scholar
van Seijen, H. & Sutton, R. True online TD(λ). Int. Conf. Mach. Learn. 32, 692–700 (2014).
Google Scholar
Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C. & Sutton, R. S. True online temporal-difference learning. J. Mach. Learn. Res. 17, 5057–5096 (2016).
Google Scholar
Ranade, S. P. & Mainen, Z. F. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J. Neurophysiol. 102, 3026–3037 (2009).
Google Scholar
Elber-Dorozko, L. & Loewenstein, Y. Striatal action-value neurons reconsidered. eLife 7, e34248 (2018).
Google Scholar
Hesterberg, T. C. What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum. Am. Statistician 69, 371–386 (2015).
Google Scholar
Li, Y. & Luo, M. In vivo electrophysiological data of DRN serotonin neurons. Zenodo https://doi.org/10.5281/zenodo.12776509 (2024).
Harkin, E. F. & Naud, R. Code and data for ‘A prospective code for value in the serotonin system’. Zenodo https://doi.org/10.5281/zenodo.14623230 (2025).