Deconstruction of rubber via C–H amination and aza-Cope rearrangement – Nature

Kim, J. K. et al. (eds) Rubber Recycling: Challenges and Developments (Royal Society of Chemistry, 2018).
Andler, R., Valdés, C., Díaz-Barrera, A. & Steinbüchel, A. Biotransformation of poly(cis-1,4-isoprene) in a multiphase enzymatic reactor for continuous extraction of oligo-isoprenoid molecules. New Biotechnol. 58, 10–16 (2020).
Google Scholar
Wolf, S. & Plenio, H. On the ethenolysis of end-of-life tire granulates. Green Chem. 15, 315–319 (2013).
Google Scholar
Sharpless, K. B. & Hori, T. Allylic amination of olefins and acetylenes by imido sulfur compounds. J. Org. Chem. 41, 176–177 (1976).
Google Scholar
Schönberger, N. & Kresze, G. Zur chemie der schwefeldiimide, VI. Enreaktionen und [2+2]-cycloadditionen von N,N′-ditosylschwefeldiimid und N-sulfinyl-p-toluolsulfonamid. Justus Liebigs Ann. Chem. 1975, 1725–1731 (1975).
Ellis, B. Chemistry and Technology of Epoxy Resins (Springer, 2015).
2021 US Scrap Tire Management Summary (US Tire Manufacturer’s Association, 2022); www.ustires.org/system/files/files/2024-02/21%20US%20Scrap%20Tire%20Management%20Report%20101722.pdf.
Xu, J. et al. Rubber antioxidants and their transformation products: environmental occurrence and potential impact. Int. J. Environ. Res. Public Health 19, 14595 (2022).
Google Scholar
Gomes, F. O., Rocha, M. R., Alves, A. & Ratola, N. A review of potentially harmful chemicals in crumb rubber used in synthetic football pitches. J. Hazard. Mater. 409, 124998 (2021).
Google Scholar
Singh, A. et al. Uncontrolled combustion of shredded tires in a landfill–part 2: population exposure, public health response, and an air quality index for urban fires. Atmos. Environ. 104, 273–283 (2015).
Google Scholar
Ditzler, R. A. J. & Zhukhovitskiy, A. V. Sigmatropic rearrangements of polymer backbones: vinyl polymers from polyesters in one step. J. Am. Chem. Soc. 143, 20326–20331 (2021).
Google Scholar
Ratushnyy, M. & Zhukhovitskiy, A. V. Polymer skeletal editing via anionic Brook rearrangements. J. Am. Chem. Soc. 143, 17931–17936 (2021).
Google Scholar
Ditzler, R. A. J., King, A. J., Towell, S. E., Ratushnyy, M. & Zhukhovitskiy, A. V. Editing of polymer backbones. Nat. Rev. Chem. 7, 600–615 (2023).
Google Scholar
Overman, L. E., Humphreys, P. G. & Welmaker, G. S. in Organic Reactions (ed. Denmark, S. E.) 747–820 (Wiley, 2011).
Abu-Rayyan, A. et al. Recent progress in the development of organic chemosensors for formaldehyde detection. ACS Omega 8, 14859–14872 (2023).
Google Scholar
Brewer, T. F. & Chang, C. J. An aza-Cope reactivity-based fluorescent probe for imaging formaldehyde in living cells. J. Am. Chem. Soc. 137, 10886–10889 (2015).
Google Scholar
Jones, A. C., May, J. A., Sarpong, R. & Stoltz, B. M. Toward a symphony of reactivity: cascades involving catalysis and sigmatropic rearrangements. Angew. Chem. Int. Ed. Engl. 53, 2556–2591 (2014).
Google Scholar
Johannsen, M. & Jørgensen, K. A. Allylic amination. Chem. Rev. 98, 1689–1708 (1998).
Google Scholar
Hodges, M. N. et al. Upcycling of polybutadiene facilitated by selenium‐mediated allylic amination. Angew. Chem. Int. Ed. Engl. 62, e202303115 (2023).
Kresze, G. & Muensterer, H. Bis(methoxycarbonyl)sulfur diimide, a convenient reagent for the allylic amination of alkenes. J. Org. Chem. 48, 3561–3564 (1983).
Google Scholar
Bao, H. & Tambar, U. K. Catalytic enantioselective allylic amination of unactivated terminal olefins via an ene reaction/[2,3]-rearrangement. J. Am. Chem. Soc. 134, 18495–18498 (2012).
Google Scholar
Campbell, T. W., Monagle, J. J., Foldi, V. S. & Carbodiimides, I. Conversion of isocyanates to carbodiimides with phospholine oxide catalyst. J. Am. Chem. Soc. 84, 3673–3677 (1962).
Google Scholar
Bruncko, M., Khuong, T.-A. V. & Sharpless, K. B. Allylic amination and 1,2-diamination with a modified diimidoselenium reagent. Angew. Chem. Int. Ed. Engl. 35, 454–456 (1996).
Google Scholar
Natsugari, H., Whittle, R. R. & Weinreb, S. M. Stereocontrolled synthesis of unsaturated vicinal diamines from Diels–Alder adducts of sulfur dioxide bis(imides). J. Am. Chem. Soc. 106, 7867–7872 (1984).
Google Scholar
Morgan, K. R., Hemmingson, J. A., Furneaux, R. H. & Stanley, R. A. A 13C solid-state NMR study of ion-exchange resins derived from natural polysaccharides. Carbohydr. Res. 262, 185–194 (1994).
Google Scholar
Clarke, C. J., Tu, W.-C., Levers, O., Bröhl, A. & Hallett, J. P. Green and sustainable solvents in chemical processes. Chem. Rev. 118, 747–800 (2018).
Google Scholar
Engels, H. et al. in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, 2011).
Subba Reddy, B. V., Nair, P. N., Antony, A., Lalli, C. & Grée, R. The aza-Prins reaction in the synthesis of natural products and analogues. Eur. J. Org. Chem. 2017, 1805–1819 (2017).
Google Scholar
Martinez, H., Ren, N., Matta, M. E. & Hillmyer, M. A. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polym. Chem. 5, 3507–3532 (2014).
Google Scholar
Kobayashi, S., Pitet, L. M. & Hillmyer, M. A. Regio- and stereoselective ring-opening metathesis polymerization of 3-substituted cyclooctenes. J. Am. Chem. Soc. 133, 5794–5797 (2011).
Google Scholar
Gaborieau, M. & Castignolles, P. Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal. Bioanal. Chem. 399, 1413–1423 (2011).
Google Scholar
Tanaka, Y. & Kakiuchi, H. Study of epoxy compounds. Part VI. Curing reactions of epoxy resin and acid anhydride with amine, acid, alcohol, and phenol as catalysts. J. Polym. Sci. A Gen. Pap. 2, 3405–3430 (1964).
Google Scholar
Okabe, T. et al. Curing reaction of epoxy resin composed of mixed base resin and curing agent: experiments and molecular simulation. Polymer 54, 4660–4668 (2013).
Google Scholar
Kim, S. L., Skibo, M. D., Manson, J. A., Hertzberg, R. W. & Janiszewski, J. Tensile, impact and fatigue behavior of an amine‐cured epoxy resin. Polym. Eng. Sci. 18, 1093–1100 (1978).
Google Scholar
Odagiri, N. et al. Amine/epoxy stoichiometric ratio dependence of crosslinked structure and ductility in amine-cured epoxy thermosetting resins. J. Appl. Polym. Sci. 138, 50542 (2021).
Google Scholar
Daghyani, H. R., Ye, L., Mai, Y.-W. & Wu, J. Fracture behaviour of a rubber-modified tough epoxy system. J. Mater. Sci. Lett. 13, 1330–1333 (1994).
Google Scholar
Daly, J., Pethrick, R. A., Fuller, P., Cunliffe, A. V. & Datta, P. K. Rubber-modified epoxy resins: 1. Equilibrium physical properties. Polymer 22, 32–36 (1981).
Google Scholar
Roschangar, F., Sheldon, R. A. & Senanayake, C. H. Overcoming barriers to green chemistry in the pharmaceutical industry–the Green Aspiration LevelTM concept. Green Chem. 17, 752–768 (2015).
Google Scholar
Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017).
Google Scholar
Katz, T. J. & Shi, S. A simple allylic amination procedure and the metathesis of N-sulfinylcarbamates. J. Org. Chem. 59, 8297–8298 (1994).
Google Scholar