Genome-wide CRISPR screen in human T cells reveals regulators of FOXP3 – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sakaguchi, S. Taking regulatory T cells into medicine. J. Exp. Med. 218, e20210831 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kanamori, M., Nakatsukasa, H., Okada, M., Lu, Q. & Yoshimura, A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 37, 803–811 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Floess, S. et al. Epigenetic control of the Foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ferreira, L. M. R., Muller, Y. D., Bluestone, J. A. & Tang, Q. Next-generation regulatory T cell therapy. Nat. Rev. Drug Discov. 18, 749–769 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mikami, N., Kawakami, R. & Sakaguchi, S. New Treg cell-based therapies of autoimmune diseases: towards antigen-specific immune suppression. Curr. Opin. Immunol. 67, 36–41 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell https://doi.org/10.1016/j.cell.2018.10.024 (2018).

  • Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8 T cells. Cell 178, 1189–1204.e23 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Cortez, J. T. et al. CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416–420 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Loo, C.-S. et al. A genome-wide CRISPR screen reveals a role for the non-canonical nucleosome-remodeling BAF complex in Foxp3 expression and regulatory T cell function. Immunity 53, 143–157.e8 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schumann, K. et al. Functional CRISPR dissection of gene networks controlling human regulatory T cell identity. Nat. Immunol. 21, 1456–1466 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2007).

    PubMed 
    MATH 

    Google Scholar 

  • Sun, X., Cui, Y., Feng, H., Liu, H. & Liu, X. TGF-β signaling controls Foxp3 methylation and Treg cell differentiation by modulating Uhrf1 activity. J. Exp. Med. 216, 2819–2837 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Seki, A. & Rutz, S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215, 985–997 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sauer, M. et al. DHX36 prevents the accumulation of translationally inactive mRNAs with G4-structures in untranslated regions. Nat. Commun. 10, 2421 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zemmour, D. et al. Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR. Nat. Immunol. 19, 291–301 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Luo, Y. et al. Single-cell transcriptomic analysis reveals disparate effector differentiation pathways in human Treg compartment. Nat. Commun. https://doi.org/10.1038/s41467-021-24213-6 (2021).

  • Chen, K. Y. et al. Joint single-cell measurements of surface proteins, intracellular proteins and gene expression with icCITE-seq. Preprint at bioRxiv https://doi.org/10.1101/2025.01.11.632564 (2025).

  • Freimer, J. W. et al. Systematic discovery and perturbation of regulatory genes in human T cells reveals the architecture of immune networks. Nat. Genet. 54, 1133–1144 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Frangieh, C. J. et al. Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332–341 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Araujo, L., Khim, P., Mkhikian, H., Mortales, C.-L. & Demetriou, M. Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation. eLife 6, e21330 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Oberoi, J. et al. Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat. Struct. Mol. Biol. 18, 177–184 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kao, H. Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in Notch receptor signaling. Cell 79, 273–282 (1994).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Castel, D. et al. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 27, 1059–1071 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature https://doi.org/10.1038/377355a0 (1995).

  • Oswald, F. et al. SHARP is a novel component of the Notch/RBP-Jκ signalling pathway. EMBO J. 21, 5417–5426 (2002).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Oswald, F. et al. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res. 44, 4703–4720 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Delacher, M. et al. Rbpj expression in regulatory T cells is critical for restraining T2 responses. Nat. Commun. 10, 1621 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Feng, Y. et al. Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus. Cell 158, 749–763 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, X., Liang, Y., LeBlanc, M., Benner, C. & Zheng, Y. Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158, 734–748 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kawakami, R. et al. Distinct Foxp3 enhancer elements coordinate development, maintenance, and function of regulatory T cells. Immunity 54, 947–961.e8 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Dikiy, S. et al. A distal Foxp3 enhancer enables interleukin-2 dependent thymic Treg cell lineage commitment for robust immune tolerance. Immunity 54, 931–946.e11 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohkura, N. et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37, 785–799 (2012).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mikami, N. et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl Acad. Sci. USA 117, 12258–12268 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yue, X. et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213, 377–397 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schmidt, A., Eriksson, M., Shang, M.-M., Weyd, H. & Tegnér, J. Comparative analysis of protocols to induce human CD4+Foxp3+ regulatory T cells by combinations of IL-2, TGF-β, retinoic acid, rapamycin and butyrate. PLoS ONE 11, e0148474 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sher, F. et al. Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nat. Genet. 51, 1149–1159 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yuan, Z. et al. Structural and functional studies of the RBPJ-SHARP complex reveal a conserved corepressor binding site. Cell Rep. 26, 845–854.e6 (2019).

  • Heinzel, T. et al. A complex containing N-CoR, mSln3 and histone deacetylase mediates transcriptional repression. Nature 387, 43–48 (1997).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, N. et al. Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch. Cell 173, 430–442.e17 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • van der Veeken, J. et al. The transcription factor Foxp3 shapes regulatory T cell identity by tuning the activity of trans-acting intermediaries. Immunity 53, 971–984.e5 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, P. et al. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 624, 154–163 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Meyer Zu Horste, G. et al. RBPJ controls development of pathogenic Th17 cells by regulating IL-23 receptor expression. Cell Rep. 16, 392–404 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity. Nat. Commun. 9, 4590 (2018).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Baskar, R. et al. Integrating transcription-factor abundance with chromatin accessibility in human erythroid lineage commitment. Cell Rep. Methods 2, 100188 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Komatsu, N. et al. Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl Acad. Sci. USA 106, 1903–1908 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chiou, S. H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research & Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals 8th edn (National Academies Press, 2011).

  • Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Joung, J. et al. Genome-scale CRISPR–Cas9 knockout and transcriptional activation screening. Nat. Protoc. 12, 828–863 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Korotkevich, G. et al. Fast gene set enrichment analysis. Preprint at bioRxiv https://doi.org/10.1101/060012 (2021).

  • Brinkman, E. K. & van Steensel, B. Rapid quantitative evaluation of CRISPR genome editing by TIDE and TIDER. Methods Mol. Biol. 1961, 29–44 (2019).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Conant, D. et al. Inference of CRISPR edits from Sanger trace data. CRISPR J. 5, 123–130 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Schoonenberg, V. A. C. et al. CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol. 19, 169 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buenrostro, J. D., Wu, B., Chang, H. Y. & Greenleaf, W. J. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015).

    PubMed 

    Google Scholar 

  • Akella, N. M., Ciraku, L. & Reginato, M. J. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol. 17, 52 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16, 742–752 (2015).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Magnetospheric origin of a fast radio burst constrained using scintillation - Nature
    Magnetospheric origin of a fast radio burst constrained using scintillation – Nature
    Pregnancy restructures the brain to prepare for childbirth and parenthood
    Pregnancy restructures the brain to prepare for childbirth and parenthood
    Paralysed man flies virtual drone using brain implant
    Paralysed man flies virtual drone using brain implant
    AI’s energy obsession gets a reality check
    AI’s energy obsession gets a reality check
    Tracking methane super-emitters from space
    Tracking methane super-emitters from space
    An operating system for executing applications on quantum network nodes - Nature
    An operating system for executing applications on quantum network nodes – Nature
    Headline Central | © 2025 | News