Glutamate gating of AMPA-subtype iGluRs at physiological temperatures – Nature

Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).
Google Scholar
Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57, 267–276 (2018).
Google Scholar
Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).
Google Scholar
Twomey, E. C., Yelshanskaya, M. V. & Sobolevsky, A. I. Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes. J. Gen. Physiol. 151, 1347–1356 (2019).
Google Scholar
Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).
Google Scholar
Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).
Google Scholar
Shahi, K. & Baudry, M. Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses. Proc. Natl Acad. Sci. USA 89, 6881–6885 (1992).
Google Scholar
Tocco, G., Massicotte, G., Standley, S., Thompson, R. F. & Baudry, M. Effect of temperature and calcium on the binding properties of the AMPA receptor in frozen rat brain sections. Eur. J. Neurosci. 4, 1093–1103 (1992).
Google Scholar
Postlethwaite, M., Hennig, M. H., Steinert, J. R., Graham, B. P. & Forsythe, I. D. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J. Physiol. 579, 69–84 (2007).
Google Scholar
Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).
Google Scholar
Twomey, E. C., Yelshanskaya, M. V., Vassilevski, A. A. & Sobolevsky, A. I. Mechanisms of channel block in calcium-permeable AMPA receptors. Neuron 99, 956–968.e4 (2018).
Google Scholar
Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353, 83–86 (2016).
Google Scholar
Hale, W. D. et al. Allosteric competition and inhibition in AMPA receptors. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01328-0 (2024).
Shelley, C., Farrant, M. & Cull-Candy, S. G. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. J. Physiol. 590, 5723–5738 (2012).
Google Scholar
Zhang, W. et al. Unitary properties of AMPA receptors with reduced desensitization. Biophys. J. 113, 2218–2235 (2017).
Google Scholar
Carrillo, E., Bhatia, N. K., Akimzhanov, A. M. & Jayaraman, V. Activity dependent inhibition of AMPA receptors by Zn2+. J. Neurosci. 40, 8629–8636 (2020).
Google Scholar
Korinek, M., Sedlacek, M., Cais, O., Dittert, I. & Vyklicky, L. Temperature dependence of N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic currents. Neuroscience 165, 736–748 (2010).
Google Scholar
Milburn, T., Saint, D. A. & Chung, S. H. The temperature dependence of conductance of the sodium channel: implications for mechanisms of ion permeation. Recept. Channels 3, 201–211 (1995).
Google Scholar
Hoffmann, H. M. & Dionne, V. E. Temperature dependence of ion permeation at the endplate channel. J. Gen. Physiol. 81, 687–703 (1983).
Google Scholar
Jiang, Y., Idikuda, V., Chowdhury, S. & Chanda, B. Activation of the archaeal ion channel MthK is exquisitely regulated by temperature. eLife https://elifesciences.org/articles/59055 (2020).
Kufel, D. S. & Wojcik, G. M. Analytical modelling of temperature effects on an AMPA-type synapse. J. Comput. Neurosci. 44, 379–391 (2018).
Google Scholar
Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).
Google Scholar
Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564–572 (2021).
Google Scholar
Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021).
Google Scholar
Hu, J. et al. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 630, 509–515 (2024).
Google Scholar
Chen, C.-Y., Chang, Y.-C., Lin, B.-L., Huang, C.-H. & Tsai, M.-D. Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 141, 19983–19987 (2019).
Google Scholar
Bansia, H. et al. Investigating gating mechanisms of ion channels using temperature-resolved cryoEM. Microsc. Microanal. 27, 1690–1694 (2021).
Google Scholar
Horning, M. S. & Mayer, M. L. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388 (2004).
Google Scholar
Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).
Google Scholar
Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).
Google Scholar
Wollmuth, L. P. et al. The Lurcher mutation identifies δ2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J. Neurosci. 20, 5973–5980 (2000).
Google Scholar
Schwarz, M. K. et al. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels. Eur. J. Neurosci. 14, 861–868 (2001).
Google Scholar
Taverna, F. et al. The Lurcher mutation of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit enhances potency of glutamate and converts an antagonist to an agonist. J. Biol. Chem. 275, 8475–8479 (2000).
Google Scholar
Kohda, K., Wang, Y. & Yuzaki, M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat. Neurosci. 3, 315–322 (2000).
Google Scholar
Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).
Google Scholar
Sobolevsky, A. I., Yelshansky, M. V. & Wollmuth, L. P. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378 (2004).
Google Scholar
Wollmuth, L. P. & Sobolevsky, A. I. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27, 321–328 (2004).
Google Scholar
Bowie, D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol. Disord. Drug Targets 7, 129–143 (2008).
Google Scholar
Huettner, J. E. Glutamate receptor pores. J. Physiol. 593, 49–59 (2015).
Google Scholar
Patneau, D., Vyklicky, L. & Mayer, M. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509 (1993).
Google Scholar
Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).
Google Scholar
Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).
Google Scholar
Klykov, O., Gangwar, S. P., Yelshanskaya, M. V., Yen, L. & Sobolevsky, A. I. Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol Cell 81, 4771–4783.e7 (2021).
Google Scholar
Amin, J. B. et al. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623 (2023).
Google Scholar
Amin, J. B., Leng, X., Gochman, A., Zhou, H.-X. & Wollmuth, L. P. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability. Nat. Commun. 9, 3748 (2018).
Google Scholar
Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 10, 3094 (2019).
Google Scholar
Carrillo, E. et al. Memantine inhibits calcium-permeable AMPA receptors. Preprint at bioRxiv https://doi.org/10.1101/2024.07.02.601784 (2024).
Yelshanskaya, M. V. et al. Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 91, 1305–1315 (2016).
Google Scholar
Chou, T.-H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).
Google Scholar
Zhao, Y., Chen, S., Swensen, A. C., Qian, W.-J. & Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364, 355–362 (2019).
Google Scholar
Zhang, D. et al. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature https://doi.org/10.1038/s41586-023-06528-0 (2023).
Ivica, J. et al. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat. Struct. Mol. Biol. 31, 1601–1613 (2024).
Google Scholar
Prieto, M. L. & Wollmuth, L. P. Gating modes in AMPA receptors. J. Neurosci. 30, 4449–4459 (2010).
Google Scholar
Carbone, A. L. & Plested, A. J. R. Superactivation of AMPA receptors by auxiliary proteins. Nat. Commun. 7, 10178 (2016).
Google Scholar
Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94, 569–580.e5 (2017).
Google Scholar
Hale, W. D. et al. Structure of transmembrane AMPA receptor regulatory protein subunit γ2. Nat. Commun. 16, 671 (2025).
Google Scholar
Yelshanskaya, M. V., Li, M. & Sobolevsky, A. I. Structure of an agonist-bound ionotropic glutamate receptor. Science 345, 1070–1074 (2014).
Google Scholar
Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).
Google Scholar
Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).
Google Scholar
Nicolai, C. & Sachs, F. Solving ion channel kinetics with the qub software. Biophys. Rev. Lett. 08, 191–211 (2013).
Google Scholar
Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).
Google Scholar
Russo, C. J. & Passmore, L. A. Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).
Google Scholar
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Google Scholar
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
Google Scholar
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
Google Scholar
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).
Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Cryst. D 60, 2126–2132 (2004).
Google Scholar
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Cryst. D 75, 861–877 (2019).
Google Scholar
Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
Google Scholar
Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).
Google Scholar
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).
Google Scholar
Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).
Google Scholar
Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).
Google Scholar