Glutamate gating of AMPA-subtype iGluRs at physiological temperatures – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Hansen, K. B. et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol. Rev. 73, 298–487 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57, 267–276 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twomey, E. C., Yelshanskaya, M. V. & Sobolevsky, A. I. Structural and functional insights into transmembrane AMPA receptor regulatory protein complexes. J. Gen. Physiol. 151, 1347–1356 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomita, S. et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains. Nature 435, 1052–1058 (2005).

    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar 

  • Yelshanskaya, M. V., Patel, D. S., Kottke, C. M., Kurnikova, M. G. & Sobolevsky, A. I. Opening of glutamate receptor channel to subconductance levels. Nature 605, 172–178 (2022).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Shahi, K. & Baudry, M. Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses. Proc. Natl Acad. Sci. USA 89, 6881–6885 (1992).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Tocco, G., Massicotte, G., Standley, S., Thompson, R. F. & Baudry, M. Effect of temperature and calcium on the binding properties of the AMPA receptor in frozen rat brain sections. Eur. J. Neurosci. 4, 1093–1103 (1992).

    PubMed 

    Google Scholar 

  • Postlethwaite, M., Hennig, M. H., Steinert, J. R., Graham, B. P. & Forsythe, I. D. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J. Physiol. 579, 69–84 (2007).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature 549, 60–65 (2017).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Twomey, E. C., Yelshanskaya, M. V., Vassilevski, A. A. & Sobolevsky, A. I. Mechanisms of channel block in calcium-permeable AMPA receptors. Neuron 99, 956–968.e4 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Elucidation of AMPA receptor-stargazin complexes by cryo-electron microscopy. Science 353, 83–86 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Hale, W. D. et al. Allosteric competition and inhibition in AMPA receptors. Nat. Struct. Mol. Biol. https://doi.org/10.1038/s41594-024-01328-0 (2024).

  • Shelley, C., Farrant, M. & Cull-Candy, S. G. TARP-associated AMPA receptors display an increased maximum channel conductance and multiple kinetically distinct open states. J. Physiol. 590, 5723–5738 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. et al. Unitary properties of AMPA receptors with reduced desensitization. Biophys. J. 113, 2218–2235 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Carrillo, E., Bhatia, N. K., Akimzhanov, A. M. & Jayaraman, V. Activity dependent inhibition of AMPA receptors by Zn2+. J. Neurosci. 40, 8629–8636 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korinek, M., Sedlacek, M., Cais, O., Dittert, I. & Vyklicky, L. Temperature dependence of N-methyl-d-aspartate receptor channels and N-methyl-d-aspartate receptor excitatory postsynaptic currents. Neuroscience 165, 736–748 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Milburn, T., Saint, D. A. & Chung, S. H. The temperature dependence of conductance of the sodium channel: implications for mechanisms of ion permeation. Recept. Channels 3, 201–211 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Hoffmann, H. M. & Dionne, V. E. Temperature dependence of ion permeation at the endplate channel. J. Gen. Physiol. 81, 687–703 (1983).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jiang, Y., Idikuda, V., Chowdhury, S. & Chanda, B. Activation of the archaeal ion channel MthK is exquisitely regulated by temperature. eLife https://elifesciences.org/articles/59055 (2020).

  • Kufel, D. S. & Wojcik, G. M. Analytical modelling of temperature effects on an AMPA-type synapse. J. Comput. Neurosci. 44, 379–391 (2018).

    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Singh, A. K. et al. Structural basis of temperature sensation by the TRP channel TRPV3. Nat. Struct. Mol. Biol. 26, 994–998 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Nadezhdin, K. D. et al. Structural mechanism of heat-induced opening of a temperature-sensitive TRP channel. Nat. Struct. Mol. Biol. 28, 564–572 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kwon, D. H. et al. Heat-dependent opening of TRPV1 in the presence of capsaicin. Nat. Struct. Mol. Biol. 28, 554–563 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hu, J. et al. Physiological temperature drives TRPM4 ligand recognition and gating. Nature 630, 509–515 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Chen, C.-Y., Chang, Y.-C., Lin, B.-L., Huang, C.-H. & Tsai, M.-D. Temperature-resolved cryo-EM uncovers structural bases of temperature-dependent enzyme functions. J. Am. Chem. Soc. 141, 19983–19987 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bansia, H. et al. Investigating gating mechanisms of ion channels using temperature-resolved cryoEM. Microsc. Microanal. 27, 1690–1694 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Horning, M. S. & Mayer, M. L. Regulation of AMPA receptor gating by ligand binding core dimers. Neuron 41, 379–388 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Armstrong, N., Jasti, J., Beich-Frandsen, M. & Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor. Cell 127, 85–97 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in delta2 glutamate receptor gene. Nature 388, 769–773 (1997).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • Wollmuth, L. P. et al. The Lurcher mutation identifies δ2 as an AMPA/kainate receptor-like channel that is potentiated by Ca2+. J. Neurosci. 20, 5973–5980 (2000).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schwarz, M. K. et al. Dominance of the lurcher mutation in heteromeric kainate and AMPA receptor channels. Eur. J. Neurosci. 14, 861–868 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Taverna, F. et al. The Lurcher mutation of an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit enhances potency of glutamate and converts an antagonist to an agonist. J. Biol. Chem. 275, 8475–8479 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kohda, K., Wang, Y. & Yuzaki, M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat. Neurosci. 3, 315–322 (2000).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gangwar, S. P. et al. Kainate receptor channel opening and gating mechanism. Nature 630, 762–768 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Sobolevsky, A. I., Yelshansky, M. V. & Wollmuth, L. P. The outer pore of the glutamate receptor channel has 2-fold rotational symmetry. Neuron 41, 367–378 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wollmuth, L. P. & Sobolevsky, A. I. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27, 321–328 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bowie, D. Ionotropic glutamate receptors & CNS disorders. CNS Neurol. Disord. Drug Targets 7, 129–143 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huettner, J. E. Glutamate receptor pores. J. Physiol. 593, 49–59 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Patneau, D., Vyklicky, L. & Mayer, M. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J. Neurosci. 13, 3496–3509 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. Mechanism of glutamate receptor desensitization. Nature 417, 245–253 (2002).

    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar 

  • Stern-Bach, Y., Russo, S., Neuman, M. & Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21, 907–918 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Klykov, O., Gangwar, S. P., Yelshanskaya, M. V., Yen, L. & Sobolevsky, A. I. Structure and desensitization of AMPA receptor complexes with type II TARP γ5 and GSG1L. Mol Cell 81, 4771–4783.e7 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Amin, J. B. et al. Two gates mediate NMDA receptor activity and are under subunit-specific regulation. Nat. Commun. 14, 1623 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Amin, J. B., Leng, X., Gochman, A., Zhou, H.-X. & Wollmuth, L. P. A conserved glycine harboring disease-associated mutations permits NMDA receptor slow deactivation and high Ca2+ permeability. Nat. Commun. 9, 3748 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Salpietro, V. et al. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 10, 3094 (2019).

    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Carrillo, E. et al. Memantine inhibits calcium-permeable AMPA receptors. Preprint at bioRxiv https://doi.org/10.1101/2024.07.02.601784 (2024).

  • Yelshanskaya, M. V. et al. Structural bases of noncompetitive inhibition of AMPA-subtype ionotropic glutamate receptors by antiepileptic drugs. Neuron 91, 1305–1315 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chou, T.-H. et al. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 632, 209–217 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhao, Y., Chen, S., Swensen, A. C., Qian, W.-J. & Gouaux, E. Architecture and subunit arrangement of native AMPA receptors elucidated by cryo-EM. Science 364, 355–362 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Zhang, D. et al. Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor. Nature https://doi.org/10.1038/s41586-023-06528-0 (2023).

  • Ivica, J. et al. Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization. Nat. Struct. Mol. Biol. 31, 1601–1613 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Prieto, M. L. & Wollmuth, L. P. Gating modes in AMPA receptors. J. Neurosci. 30, 4449–4459 (2010).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Carbone, A. L. & Plested, A. J. R. Superactivation of AMPA receptors by auxiliary proteins. Nat. Commun. 7, 10178 (2016).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Twomey, E. C., Yelshanskaya, M. V., Grassucci, R. A., Frank, J. & Sobolevsky, A. I. Structural bases of desensitization in AMPA receptor-auxiliary subunit complexes. Neuron 94, 569–580.e5 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hale, W. D. et al. Structure of transmembrane AMPA receptor regulatory protein subunit γ2. Nat. Commun. 16, 671 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yelshanskaya, M. V., Li, M. & Sobolevsky, A. I. Structure of an agonist-bound ionotropic glutamate receptor. Science 345, 1070–1074 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Nicolai, C. & Sachs, F. Solving ion channel kinetics with the qub software. Biophys. Rev. Lett. 08, 191–211 (2013).

    MATH 

    Google Scholar 

  • Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Russo, C. J. & Passmore, L. A. Ultrastable gold substrates for electron cryomicroscopy. Science 346, 1377–1380 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Cryst. D 60, 2126–2132 (2004).

    MATH 

    Google Scholar 

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Cryst. D 75, 861–877 (2019).

    CAS 
    MATH 

    Google Scholar 

  • Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).

    CAS 

    Google Scholar 

  • Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Why the word scientist was controversial 100 years ago
    Why the word scientist was controversial 100 years ago
    Learning-associated astrocyte ensembles regulate memory recall - Nature
    Learning-associated astrocyte ensembles regulate memory recall – Nature
    AI companions are the final stage of digital addiction, and lawmakers are taking aim
    AI companions are the final stage of digital addiction, and lawmakers are taking aim
    Foundation models for fast, label-free detection of glioma infiltration - Nature
    Foundation models for fast, label-free detection of glioma infiltration – Nature
    Can Google Scholar survive the AI revolution?
    Can Google Scholar survive the AI revolution?
    OpenAI has created an AI model for longevity science
    OpenAI has created an AI model for longevity science
    Headline Central | © 2025 | News