irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA – Nature

Gebauer, F., Schwarzl, T., Valcárcel, J. & Hentze, M. W. RNA-binding proteins in human genetic disease. Nat. Rev. Genet. 22, 185–198 (2021).
Google Scholar
Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).
Google Scholar
Buccitelli, C. & Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 21, 630–644 (2020).
Google Scholar
Mehta, M., Raguraman, R., Ramesh, R. & Munshi, A. RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv. Drug Deliv. Rev. 191, 114569 (2022).
Google Scholar
Heyn, L., Finset, A. & Ruland, C. M. Talking about feelings and worries in cancer consultations: the effects of an interactive tailored symptom assessment on source, explicitness, and timing of emotional cues and concerns. Cancer Nurs. 36, E20–E30 (2013).
Google Scholar
Zarnegar, B. J. et al. irCLIP platform for efficient characterization of protein-RNA interactions. Nat. Methods 13, 489–492 (2016).
Google Scholar
Ramanathan, M., Porter, D. F. & Khavari, P. A. Methods to study RNA-protein interactions. Nat. Methods 16, 225–234 (2019).
Google Scholar
Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Primer 1, 20 (2021).
Google Scholar
Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell 69, 354–369 (2018).
Google Scholar
Schell, B., Legrand, P. & Fribourg, S. Crystal structure of SFPQ-NONO heterodimer. Biochimie 198, 1–7 (2022).
Google Scholar
Wandrey, F. et al. The NF45/NF90 heterodimer contributes to the biogenesis of 60S ribosomal subunits and influences nucleolar morphology. Mol. Cell. Biol. 35, 3491–3503 (2015).
Google Scholar
Damianov, A. et al. Rbfox proteins regulate splicing as part of a large multiprotein complex LASR. Cell 165, 606–619 (2016).
Google Scholar
Choi, Y. D. & Dreyfuss, G. Isolation of the heterogeneous nuclear RNA-ribonucleoprotein complex (hnRNP): a unique supramolecular assembly. Proc. Natl Acad. Sci. USA 81, 7471–7475 (1984).
Google Scholar
Pandolfo, M., Valentini, O., Biamonti, G., Rossi, P. & Riva, S. Large-scale purification of hnRNP proteins from HeLa cells by affinity chromatography on ssDNA-cellulose. Eur. J. Biochem. 162, 213–220 (1987).
Google Scholar
Swanson, M. S. & Dreyfuss, G. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol. Cell. Biol. 8, 2237–2241 (1988).
Google Scholar
Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).
Google Scholar
Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteom. 11, M111.014050 (2012).
Google Scholar
Kristofich, J. & Nicchitta, C. V. High-throughput quantitation of protein-RNA UV-crosslinking efficiencies as a predictive tool for high-confidence identification of RNA-binding proteins. RNA 30, 644–661 (2024).
Google Scholar
Briata, P. et al. Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease. Wiley Interdiscip. Rev. RNA 7, 227–240 (2016).
Google Scholar
Papadopoulou, C., Patrinou-Georgoula, M. & Guialis, A. Extensive association of HuR with hnRNP proteins within immunoselected hnRNP and mRNP complexes. Biochim. Biophys. Acta 1804, 692–703 (2010).
Google Scholar
Schwarzl, T. et al. Improved discovery of RNA-binding protein binding sites in eCLIP data using DEWSeq. Nucleic Acids Res. 52, e1 (2024).
Google Scholar
Porter, D. F. et al. easyCLIP analysis of RNA-protein interactions incorporating absolute quantification. Nat. Commun. 12, 1569 (2021).
Google Scholar
Feng, H. et al. Modeling RNA-binding protein specificity in vivo by precisely registering protein-RNA crosslink sites. Mol. Cell 74, 1189–1204 (2019).
Google Scholar
Cai, H. et al. Roles of embryonic lethal abnormal vision-like RNA binding proteins in cancer and beyond. Front. Cell Dev. Biol. 10, 847761 (2022).
Google Scholar
Rothamel, K. et al. ELAVL1 primarily couples mRNA stability with the 3′ UTRs of interferon-stimulated genes. Cell Rep. 35, 109178 (2021).
Google Scholar
Iadevaia, V. et al. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on CDKN1B/p27Kip1 3′UTRs in cisplatin treated cells. RNA Biol. 17, 33–46 (2020).
Google Scholar
Yang, Y.-C. et al. The RNA-binding protein KSRP aggravates malignant progression of clear cell renal cell carcinoma through transcriptional inhibition and post-transcriptional destabilization of the NEDD4L ubiquitin ligase. J. Biomed. Sci. 30, 68 (2023).
Google Scholar
Burgess, A. W. Regulation of signaling from the epidermal growth factor family. J. Phys. Chem. B 126, 7475–7485 (2022).
Google Scholar
Nava, M. et al. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med. Genom. 12, 32 (2019).
Google Scholar
Ma, H., Zhang, Z. & Tong, T. The effects of epidermal growth factor on gene expression in human fibroblasts. In Vitro Cell. Dev. Biol. Anim. 38, 481–486 (2002).
Google Scholar
Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).
Google Scholar
Mo, L. et al. An analysis of the role of HnRNP C dysregulation in cancers. Biomark. Res. 10, 19 (2022).
Google Scholar
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019).
Google Scholar
Zhou, R. et al. Concerted effects of heterogeneous nuclear ribonucleoprotein C1/C2 to control vitamin D-directed gene transcription and RNA splicing in human bone cells. Nucleic Acids Res. 45, 606–618 (2017).
Google Scholar
Martino, F. et al. The mechanical regulation of RNA binding protein hnRNPC in the failing heart. Sci. Transl. Med. 14, eabo5715 (2022).
Google Scholar
Kim, J. H. et al. Heterogeneous nuclear ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. Mol. Cell. Biol. 23, 708–720 (2003).
Google Scholar
Hong, D., Park, T. & Jeong, S. Nuclear UPF1 Is associated with chromatin for transcription-coupled RNA surveillance. Mol. Cells 42, 523–529 (2019).
Google Scholar
Singh, A. K. et al. The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from gene loci. eLife 8, e41444 (2019).
Google Scholar
Kim, Y. K. & Maquat, L. E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA 25, 407–422 (2019).
Google Scholar
Jacob, A. G. & Smith, C. W. J. Intron retention as a component of regulated gene expression programs. Hum. Genet. 136, 1043–1057 (2017).
Google Scholar
Hurt, J. A., Robertson, A. D. & Burge, C. B. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23, 1636–1650 (2013).
Google Scholar
Xing, S. et al. Identification of HnRNPC as a novel Tau exon 10 splicing factor using RNA antisense purification mass spectrometry. RNA Biol. 19, 104–116 (2022).
Google Scholar
Almarán, B., Ramis, G., Fernández de Mattos, S. & Villalonga, P. Rnd3 Is a crucial mediator of the invasive phenotype of glioblastoma cells downstream of receptor tyrosine kinase signalling. Cells 11, 3716 (2022).
Google Scholar
Nozaki, K. et al. DDX3X induces primary EGFR-TKI resistance based on intratumor heterogeneity in lung cancer cells harboring EGFR-activating mutations. PLoS ONE 9, e111019 (2014).
Google Scholar
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Google Scholar
Nystrom, S. L. & McKay, D. J. Memes: a motif analysis environment in R using tools from the MEME Suite. PLoS Comput. Biol. 17, e1008991 (2021).
Google Scholar
Miao, W. et al. Glucose dissociates DDX21 dimers to regulate mRNA splicing and tissue differentiation. Cell 186, 80–97 (2023).
Google Scholar
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
Google Scholar
Chen, X., Cao, Z. & Wang, Y. Amyotrophic lateral sclerosis-associated mutants of SOD1 perturb mRNA splicing through aberrant interactions with SRSF2. Anal. Chem. 96, 9713–9720 (2024).
Google Scholar
Feng, Z., Fang, P., Zheng, H. & Zhang, X. DEP2: an upgraded comprehensive analysis toolkit for quantitative proteomics data. Bioinformatics 39, btad526 (2023).
Google Scholar
Ou, J. & Zhu, L. J. trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 16, 453–454 (2019).
Google Scholar
Ge, X. et al. Clipper: p-value-free FDR control on high-throughput data from two conditions. Genome Biol. 22, 288 (2021).
Google Scholar
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019).
Google Scholar
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Google Scholar
Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).
Google Scholar
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
Sahadevan, S. et al. htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets. Bioinformatics 39, btac747 (2023).
Google Scholar
Zhu, L. J. et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 11, 237 (2010).
Google Scholar
Gu, Z., Eils, R., Schlesner, M. & Ishaque, N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC Genom. 19, 234 (2018).
Google Scholar
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
Google Scholar
Narykov, O., Srinivasan, S. & Korkin, D. Computational protein modeling and the next viral pandemic. Nat. Methods 18, 444–445 (2021).
Google Scholar
Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).
Google Scholar
Shen, S. et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-seq data. Proc. Natl Acad. Sci. USA 111, E5593–E5601 (2014).
Google Scholar
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
Google Scholar
Zhu, A., Srivastava, A., Ibrahim, J. G., Patro, R. & Love, M. I. Nonparametric expression analysis using inferential replicate counts. Nucleic Acids Res. 47, e105 (2019).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
Google Scholar
Nunes, C. et al. MSGP: the first database of the protein components of the mammalian stress granules. Database 2019, baz031 (2019).
Google Scholar
Millar, S. R. et al. A new phase of networking: the molecular composition and regulatory dynamics of mammalian stress granules. Chem. Rev. 123, 9036–9064 (2023).
Google Scholar
Ducoli, L. et al. Codes for ‘irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA’. Figshare https://doi.org/10.6084/m9.figshare.26169718 (2025).
Ducoli, L. et al. snakemake pipeline for ‘irCLIP-RNP and Re-CLIP reveal patterns of dynamic protein assemblies on RNA’. Figshare https://doi.org/10.6084/m9.figshare.26156764 (2025).