Solidification of Earth’s mantle led inevitably to a basal magma ocean – Nature

Dziewonski, A. M., Lekic, V. & Romanowicz, B. A. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).
Google Scholar
Tolstikhin, I., Kramers, J. D. & Hofmann, A. W. A chemical earth model with whole mantle convection: the importance of a core–mantle boundary layer (D″) and its early formation. Chem. Geol. 226, 79–99 (2006).
Google Scholar
Labrosse, S., Hernlund, J. W. & Coltice, N. A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450, 866–869 (2007).
Google Scholar
Lee, C.-T. A. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010).
Google Scholar
Carlson, R. W. et al. How did early Earth become our modern world? Annu. Rev. Earth Planet. Sci. 42, 151–178 (2014).
Google Scholar
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).
Google Scholar
Willbold, M., Elliott, T. & Moorbath, S. The tungsten isotopic composition of the earth’s mantle before the terminal bombardment. Nature 477, 195–198 (2011).
Google Scholar
Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).
Google Scholar
Rizo, H., Boyet, M., Blichert-Toft, J. & Rosing, M. T. Early mantle dynamics inferred from 142Nd variations in archean rocks from southwest greenland. Earth Planet. Sci. Lett. 377-378, 324–335 (2013).
Google Scholar
Rizo, H. et al. Preservation of earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Google Scholar
Morino, P., Caro, G. & Reisberg, L. Differentiation mechanisms of the early Hadean mantle: insights from combined 176Hf-142,143Nd signatures of Archean rocks from the Saglek block. Geochim. Cosmochim. Acta 240, 43–63 (2018).
Google Scholar
Kurz, M. D., Curtice, J., Fornari, D., Geist, D. & Moreira, M. Primitive neon from the center of the Galápagos hotspot. Earth Planet. Sci. Lett. 286, 23–34 (2009).
Google Scholar
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Google Scholar
Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
Google Scholar
Zhang, N., Zhong, S., Leng, W. & Li, Z.-X. A model for the evolution of the Earth’s mantle structure since the Early Paleozoic. J. Geophys. Res. Solid Earth 115, B06401 (2010).
Google Scholar
Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).
Google Scholar
Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).
Google Scholar
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).
Google Scholar
French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).
Google Scholar
Fiquet, G. et al. Melting of peridotite to 140 gigapascals. Science 329, 1516–1518 (2010).
Google Scholar
Andrault, D. et al. Solidus and liquidus profiles of chondritic mantle: implication for melting of the earth across its history. Earth Planet. Sci. Lett. 304, 251–259 (2011).
Google Scholar
Boukaré, C.-E., Ricard, Y. & Fiquet, G. Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: application to the crystallization of Earth’s magma ocean. J Geophys. Res. Solid Earth 120, 6085–6101 (2015).
Google Scholar
Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density crossover in a deep magma ocean. Earth Planet. Sci. Lett. 516, 202–211 (2019).
Google Scholar
Miyazaki, Y. & Korenaga, J. On the timescale of magma ocean solidification and its chemical consequences: 2. Compositional differentiation under crystal accumulation and matrix compaction. J. Geophys. Res. Solid Earth 124, 3399–3419 (2019).
Google Scholar
Solomatov, V. S. in Treatise on Geophysics (ed. Schubert, G.) Vol. 9, 91–119 (Elsevier, 2007).
Stixrude, L. & Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 310, 297–299 (2005).
Google Scholar
Boukaré, C.-E. & Ricard, Y. Modeling phase separation and phase change for magma ocean solidification dynamics. Geochem. Geophys. Geosyst. 18, 3385–3404 (2017).
Google Scholar
Tonks, W. B. & Melosh, H. J. The physics of crystal settling and suspension in a turbulent magma ocean. Orig. Earth 1, 151–174 (1990).
Google Scholar
Lavorel, G. & Le Bars, M. Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E 80, 046324 (2009).
Google Scholar
Suckale, J., Elkins-Tanton, L. T. & Sethian, J. A. Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the moon. J. Geophys. Res. Planets 117, E08005 (2012).
Google Scholar
Bower, D. J., Sanan, P. & Wolf, A. S. Numerical solution of a non-linear conservation law applicable to the interior dynamics of partially molten planets. Phys. Earth Planet. Inter. 274, 49–62 (2018).
Google Scholar
Maas, C. & Hansen, U. Dynamics of a terrestrial magma ocean under planetary rotation: A study in spherical geometry. Earth Planet. Sci. Lett. 513, 81–94 (2019).
Google Scholar
Martin, D. & Nokes, R. Crystal settling in a vigorously convecting magma chamber. Nature 332, 534–536 (1988).
Google Scholar
Hier-Majumder, S. & Hirschmann, M. M. The origin of volatiles in the Earth’s mantle. Geochem. Geophys. Geosyst. 18, 3078–3092 (2017).
Google Scholar
McKenzie, D. The generation and compaction of partially molten rock. J. Petrol. 25, 713–765 (1984).
Google Scholar
Bercovici, D., Ricard, Y. & Schubert, G. A two-phase model for compaction and damage: 1. general theory. J. Geophys. Res. Solid Earth 106, 8887–8906 (2001).
Google Scholar
Keller, T. & Suckale, J. A continuum model of multi-phase reactive transport in igneous systems. Geophys. J. Int. 219, 185–222 (2019).
Google Scholar
Funamori, N. & Sato, T. Density contrast between silicate melts and crystals in the deep mantle: An integrated view based on static-compression data. Earth Planet. Sci. Lett. 295, 435–440 (2010).
Google Scholar
Wicks, J. K., Jackson, J. M. & Sturhahn, W. Very low sound velocities in iron-rich (Mg,Fe)O: implications for the core-mantle boundary region. Geophys. Res. Lett. 37, L15304 (2010).
Google Scholar
Bower, D. J., Wicks, J. K., Gurnis, M. & Jackson, J. M. A geodynamic and mineral physics model of a solid-state ultralow-velocity zone. Earth Planet. Sci. Lett. 303, 193–202 (2011).
Google Scholar
Karki, B. B. & Stixrude, L. P. Viscosity of MgSiO3 liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328, 740–742 (2010).
Google Scholar
Dygert, N., Lin, J.-F., Marshall, E. W., Kono, Y. & Gardner, J. E. A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys. Res. Lett. 44, 11,282–11,291 (2017).
Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012).
Google Scholar
Kennedy, A., Lofgren, G. & Wasserburg, G. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. Earth Planet. Sci. Lett. 115, 177–195 (1993).
Google Scholar
Corgne, A., Liebske, C., Wood, B. J., Rubie, D. C. & Frost, D. J. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim. Cosmochim. Acta 69, 485–496 (2005).
Google Scholar
Rizo, H. et al. The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks. Nature 491, 96–100 (2012).
Google Scholar
Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).
Google Scholar
Maurice, M. et al. Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. Planets 122, 577–598 (2017).
Google Scholar
Morison, A., Labrosse, S., Deguen, R. & Alboussière, T. Timescale of overturn in a magma ocean cumulate. Earth Planet. Sci. Lett. 516, 25–36 (2019).
Google Scholar
Mcdonough, W.F. & Sun, S.-s. The composition of the earth. Chem. Geol. 120, 223–253 (1995).
Google Scholar
Herzberg, C.T. & O’Hara, M.J. Origin of mantle peridotite and komatiite by partial melting. Geophys. Res. Lett. 12, 541–544 (1985).
Google Scholar
Salvador, A. & Samuel, H. Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics. Icarus 390, 115265 (2023).
Google Scholar
Parai, R. A dry ancient plume mantle from noble gas isotopes. Proc. Natl Acad. Sci. USA 119, e2201815119 (2022).
Google Scholar
Oliveira, B., Afonso, J. C., Zlotnik, S. & Diez, P. Numerical modelling of multiphase multicomponent reactive transport in the earth’s interior. Geophys. J. Int. 212, 345–388 (2018).
Google Scholar
Wong, Y.-Q. & Keller, T. A unified numerical model for two-phase porous, mush and suspension flow dynamics in magmatic systems. Geophys. J. Int. 233, 769–795 (2023).
Google Scholar
Drew, D. A. Averaged field equations for two-phase media. Stud. Appl. Math. 50, 133–166 (1971).
Google Scholar
Ribe, N. M. Theory of melt segregation — a review. J. Volcanol. Geotherm. Res. 33, 241–253 (1987).
Google Scholar
Katz, R. F. Magma dynamics with the enthalpy method: benchmark solutions and magmatic focusing at mid-ocean ridges. J. Petrol. 49, 2099–2121 (2008).
Google Scholar
Rudge, J. F., Bercovici, D. & Spiegelman, M. Disequilibrium melting of a two phase multicomponent mantle. Geophys. J. Int. 184, 699–718 (2011).
Google Scholar
Katz, R. F., Jones, D. W. R., Rudge, J. F. & Keller, T. Physics of melt extraction from the mantle: speed and style. Ann. Rev. Earth Planet. Sci. 50, 507–540 (2022).
Google Scholar
Katz, R. F. The Dynamics of Partially Molten Rock (Princeton Univ. Press, 2022).
Šrámek, O., Ricard, Y. & Bercovici, D. Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int. 168, 964–982 (2007).
Google Scholar
Šrámek, O. Modèle d’écoulement biphasé en sciences de la Terre: fusion partielle, compaction et différenciation. Ph.D. thesis, Université de Lyon – Ecole Normale Supérieure, Lyon (2007).
Samuel, H. Time domain parallelization for computational geodynamics. Geochem. Geophys. Geosyst. 13, Q01003 (2012).
Google Scholar
Samuel, H. A deformable particle-in-cell method for advective transport in geodynamic modelling. Geophys. J. Int. 214, 1744–1773 (2018).
Google Scholar
Samuel, H. & Evonuk, M. Modeling advection in geophysical flows with particle level sets. Geochem. Geophys. Geosyst. 11, Q08020 (2010).
Google Scholar
Pusok, A. E., Katz, R. F., May, D. A. & Li, Y. Chemical heterogeneity, convection and asymmetry beneath mid-ocean ridges. Geophys. J. Int. 231, 2055–2078 (2022).
Google Scholar
Rabinowicz, M. & Vigneresse, J.-L. Melt segregation under compaction and shear channeling: application to granitic magma segregation in a continental crust. J. Geophys. Res. Solid Earth 109, B04407 (2004).
Google Scholar
Nabiei, F. et al. Investigating magma ocean solidification on Earth through laser-heated diamond anvil cell experiments. Geophys. Res. Lett. 48, e2021GL092446 (2021).
Google Scholar
Rudge, J. F. The viscosities of partially molten materials undergoing diffusion creep. J. Geophys. Res. Solid Earth 123, 10,534–10,562 (2018).
Google Scholar
Connolly, J. A. D. & Schmidt, M. W. Viscosity of crystal-mushes and implications for compaction-driven fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024743 (2022).
Google Scholar
Alappat, C. et al. A recursive algebraic coloring technique for hardware-efficient symmetric sparse matrix-vector multiplication. ACM Trans. Parallel Comput. 7, 19 (2020).
Google Scholar
Bollhöfer, M., Schenk, O., Janalik, R., Hamm, S. & Gullapalli, K. in Parallel Algorithms in Computational Science and Engineering 3–33 (Springer, 2020).
Boukaré, C.-E., Badro, J. & Samuel, H. The solidification of Earth’s early mantle led inevitably to a basal magma ocean. IPGP Research Collection https://doi.org/10.18715/IPGP.2024.m42039nd (2025).