Synaptic and neural behaviours in a standard silicon transistor – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Orchard, G. et al. Efficient neuromorphic signal processing with Loihi 2. In Proc. 2021 IEEE Workshop on Signal Processing Systems (SiPS) (eds Sousa, L. & Sheikh, F.) 254–259 (IEEE, 2021).

  • Cassidy, A. S. et al. 11.4 IBM NorthPole: an architecture for neural network inference with a 12 nm chip. In Proc. 2024 IEEE International Solid-State Circuits Conference (ISSCC) Vol. 67 (ed. O’Mahony, F.) 214–215 (IEEE, 2024).

  • Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Koch, C. Computation and the single neuron. Nature 385, 207–210 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Li, C. et al. Short-term synaptic plasticity in emerging devices for neuromorphic computing. iScience 26, 106315 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Editorial. Does AI have a hardware problem? Nat. Electron. 1, 205 (2018).

    Article 
    MATH 

    Google Scholar 

  • Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Song, W. et al. Programming memristor arrays with arbitrarily high precision for analog computing. Science 383, 903–910 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

    Article 
    MATH 

    Google Scholar 

  • Amirsoleimani, A. et al. In-memory vector-matrix multiplication in monolithic complementary metal–oxide–semiconductor-memristor integrated circuits: design choices, challenges, and perspectives. Adv. Intell. Syst. 2, 2000115 (2020).

    Article 

    Google Scholar 

  • Islam, R. et al. Device and materials requirements for neuromorphic computing. J. Phys. D Appl. Phys. 52, 113001 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Pazos, S. et al. Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 9, 358–373 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Migliato Marega, G. et al. A large-scale integrated vector–matrix multiplication processor based on monolayer molybdenum disulfide memories. Nat. Electron. 6, 991–998 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sharma, D. et al. Linear symmetric self-selecting 14-bit kinetic molecular memristors. Nature 633, 560–566 (2024).

  • Han, J.-K. et al. Cointegration of single-transistor neurons and synapses by nanoscale CMOS fabrication for highly scalable neuromorphic hardware. Sci. Adv. 7, eabg8836 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woo, S. Y. et al. Low-power and high-density neuron device for simultaneous processing of excitatory and inhibitory signals in neuromorphic systems. IEEE Access 8, 202639–202647 (2020).

    Article 

    Google Scholar 

  • Carrere, J.-P. et al. Embedded Flash memory thermal budget impact on core CMOS 90 nm devices. In Proc. ESSDERC 2007 – 37th European Solid State Device Research Conference (eds Schmitt-Landsiedel, D. & Thewes, R.) 263–266 (IEEE, 2007).

  • Chen, Y., Xiao, K., Qin, Y., Liu, F. & Wan, J. A compact artificial spiking neuron using a sharp-switching FET with ultra-low energy consumption down to 0.45 fJ/spike. IEEE Electron Device Lett. 44, 160–163 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dutta, S., Kumar, V., Shukla, A., Mohapatra, N. R. & Ganguly, U. Leaky integrate and fire neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7, 8257 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chavan, T., Dutta, S., Mohapatra, N. R. & Ganguly, U. Band-to-band tunneling based ultra-energy-efficient silicon neuron. IEEE Trans. Electron Devices 67, 2614–2620 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Singh, A. K., Saraswat, V., Baghini, M. S. & Ganguly, U. Quantum tunneling based ultra-compact and energy efficient spiking neuron enables hardware SNN. IEEE Trans. Circuits Syst. I Regul. Pap. 69, 3212–3224 (2022).

    Article 
    MATH 

    Google Scholar 

  • Kadam, A. A., Singh, A. K., Somappa, L., Baghini, M. S. & Ganguly, U. A compact low power multi-mode spiking neuron using band to band tunneling. In Proc. 2024 IEEE International Symposium on Circuits and Systems (ISCAS) (eds Nishio, Y. et al.) 1–5 (IEEE, 2024).

  • Boudou, A. & Doyle, B. S. Hysteresis IV effects in short-channel silicon MOSFET’s. IEEE Electron Device Lett. 8, 300–302 (1987).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Park, H. J., Bawedin, M., Choi, H. G. & Cristoloveanu, S. Kink effect in ultrathin FDSOI MOSFETs. Solid State Electron. 143, 33–40 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Liang, F.-X., Wang, I.-T. & Hou, T.-H. Progress and benchmark of spiking neuron devices and circuits. Adv. Intell. Syst. 3, 2100007 (2021).

    Article 
    MATH 

    Google Scholar 

  • Milozzi, A., Ricci, S. & Ielmini, D. Memristive tonotopic mapping with volatile resistive switching memory devices. Nat. Commun. 15, 2812 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ye, F., Kiani, F., Huang, Y. & Xia, Q. Diffusive memristors with uniform and tunable relaxation time for spike generation in event-based pattern recognition. Adv. Mater. 35, 2204778 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Chen, P.-Y., Peng, X. & Yu, S. NeuroSim+ : An integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures. In Proc. 2017 IEEE International Electron Devices Meeting (IEDM) (eds Rim, K. & Takayanagi, M.) 6.1.1–6.1.4 (IEEE, 2017).

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article 
    MATH 

    Google Scholar 

  • Fujiwara, H. et al. 34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 fully-digital compute-in-memory macro supporting INT12 × INT12 with a parallel-MAC architecture and foundry 6T-SRAM bit cell. In Proc. 2024 IEEE International Solid-State Circuits Conference (ISSCC), Vol. 67 (ed. O’Mahony, F.) 572–574 (IEEE, 2024).

  • M1076 Analog Matrix Processor (Mythic, 2025); https://mythic.ai/products/m1076-analog-matrix-processor/.

  • Wen, T.-H. et al. Fusion of memristor and digital compute-in-memory processing for energy-efficient edge computing. Science 384, 325–332 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Khan, F., Cartier, E., Woo, J. C. S. & Iyer, S. S. Charge trap transistor (CTT): an embedded fully logic-compatible multiple-time programmable non-volatile memory element for high-k-metal-gate CMOS technologies. IEEE Electron Device Lett. 38, 44–47 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Embedded Flash IP Solutions (Infineon Technologies); www.infineon.com/cms/en/product/memories/embedded-flash-ip-solutions.

  • Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Cypress eCTTM Flash (Cypress Semiconductor Corporation, 2017); www.infineon.com/dgdl/Infineon-eCT_Flash-ProductBrief-v01_00-EN.pdf?fileId=8ac78c8c7d710014017d7153137b2071.

  • Li, Y., Lee, J.-W. & Sze, S.-M. Optimization of the anti-punch-through implant for electrostatic discharge protection circuit design. Jpn. J. Appl. Phys. 42, 2152 (2003).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Guegan, G. et al. A 0.10 μm buried p-channel MOSFET with through the gate boron implantation and arsenic tilted pocket. Solid State Electron. 46, 343–348 (2002).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Takeuchi, H. et al. Punch-through stop doping profile control via interstitial trapping by oxygen-insertion silicon channel. IEEE J. Electron Devices Soc. 6, 481–486 (2018).

    Article 
    CAS 

    Google Scholar 

  • Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Qiao, S., Moran, S., Srinivas, D., Pamarti, S. & Iyer, S. S. Demonstration of analog compute-in-memory using the charge-trap transistor in 22 FDX technology. In Proc. 2022 International Electron Devices Meeting (IEDM) (eds Triyoso, D. & Moselund, K.) 2.5.1–2.5.4 (IEEE, 2022).

  • Xie, S. et al. 16.2 eDRAM-CIM: compute-in-memory design with reconfigurable embedded-dynamic-memory array realizing adaptive data converters and charge-domain computing. In Proc. 2021 IEEE International Solid-State Circuits Conference (ISSCC) Vol. 64 (ed. Ikeda, M.) 248–250 (IEEE, 2021).

  • Kim, S. et al. Neuro-CIM: a 310.4 TOPS/W neuromorphic computing-in-memory processor with low WL/BL activity and digital-analog mixed-mode neuron firing. In Proc. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (ed. Wong, P.) 38–39 (IEEE, 2022).

  • Pazos, S. et al. Synaptic and neural behaviours in a standard silicon transistor – dataset and simulation files. Zenodo https://doi.org/10.5281/zenodo.13843362 (2025).

  • Colinge, J.-P. Reduction of kink effect in thin-film SOI MOSFETs. IEEE Electron Device Lett. 9, 97–99 (1988).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Moselund, K. E. et al. Punch-through impact ionization MOSFET (PIMOS): from device principle to applications. Solid State Electron. 52, 1336–1344 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Park, S.-O., Jeong, H., Park, J., Bae, J. & Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 13, 2888 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bian, J. et al. Advances in memristor based artificial neuron fabrication-materials, models, and applications. Int. J. Extrem. Manuf. 6, 012002 (2023).

    Article 
    MATH 

    Google Scholar 

  • Rauch, S. E. & Guarin, F. in Hot Carrier Degradation in Semiconductor Devices (ed. Grasser, T.) 29–56 (Springer, 2015).

  • Fair, R. B. & Sun, R. C. Threshold-voltage instability in MOSFET’s due to channel hot-hole emission. IEEE Trans. Electron Devices 28, 83–94 (1981).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Saks, N. S. et al. Observation of hot-hole injection in NMOS transistors using a modified floating-gate technique. IEEE Trans. Electron Devices 33, 1529–1534 (1986).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Brisbin, D., Mirgorodski, Y. & Chaparala, P. Anomalous NMOSFET hot carrier degradation due to trapped positive charge in a DGO CMOS process. In Proc. 2005 IEEE International Reliability Physics Symposium (eds Volertsen, R. & Conley, J.) 269–274 (IEEE, 2005).

  • Yoshikawa, K. et al. Lucky-hole injection induced by band-to-band tunneling leakage in stacked gate transistors. In Proc. International Electron Devices MeetingInternational Technical Digest on Electron Devices 577–580 (IEEE, 1990).

  • Ielmini, D., Ghetti, A., Spinelli, A. S. & Visconti, A. A study of hot-hole injection during programming drain disturb in Flash memories. IEEE Trans. Electron Devices 53, 668–676 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Five years on: how Brexit changed three scientists’ careers
    Five years on: how Brexit changed three scientists’ careers
    AI-generated images threaten science — here’s how researchers hope to spot them
    AI-generated images threaten science — here’s how researchers hope to spot them
    Mars’s ancient atmosphere might be locked in clay
    Mars’s ancient atmosphere might be locked in clay
    The Download: gene de-extinction, and Ukraine’s Starlink connection
    The Download: gene de-extinction, and Ukraine’s Starlink connection
    What’s on the table at this year’s UN climate conference
    What’s on the table at this year’s UN climate conference
    The world’s oldest tree? Genetic analysis traces evolution of iconic Pando forest
    The world’s oldest tree? Genetic analysis traces evolution of iconic Pando forest
    Headline Central | © 2025 | News