Acoustic modes in M67 cluster stars trace deepening convective envelopes – Nature

Aerts, C. Probing the interior physics of stars through asteroseismology. Rev. Mod. Phys. 93, 015001 (2021).
Google Scholar
Li, T. et al. Asteroseismology of 3642 Kepler red giants: correcting the scaling relations based on detailed modeling. Astrophys. J. 927, 167 (2022).
Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars. Astron. Astrophys. 411, 215–220 (2003).
Google Scholar
White, T. R. et al. Asteroseismic diagrams from a survey of solar-like oscillations with Kepler. Astrophys. J. Lett. 742, L3 (2011).
Google Scholar
Lund, M. N. et al. Standing on the shoulders of dwarfs: the Kepler Asteroseismic LEGACY sample. I. Oscillation mode parameters. Astrophys. J. 835, 172 (2017).
Google Scholar
Kjeldsen, H. & Bedding, T. R. Amplitudes of stellar oscillations: the implications for asteroseismology. Astron. Astrophys. 293, 87–106 (1995).
Google Scholar
Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).
Google Scholar
Tassoul, M. Second-order asymptotic approximations for stellar nonradial acoustic modes. Astrophys. J. 358, 313–327 (1990).
Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. The seismology of stellar cores: a simple theoretical description of the ‘small frequency separations’. Mon. Not. R. Astron. Soc. 267, 297–302 (1994).
Google Scholar
Christensen-Dalsgaard, J. The Sun as a fundamental calibrator of stellar evolution. In Proc. International Astronomical Union, Vol. 4, Symposium S258: The Ages of Stars, Vol. 4, 431–442 (Cambridge Univ. Press, 2009).
Christensen-Dalsgaard, J. A Hertzsprung-Russell diagram for stellar oscillations. In Proc. Symposium of International Astronomical Union, Advances in Helio- and Asteroseismology 123, 295–298 (Cambridge Univ. Press, 1988).
Aizenman, M., Smeyers, P. & Weigert, A. Avoided crossing of modes of non-radial stellar oscillations. Astron. Astrophys. 58, 41–46 (1977).
Google Scholar
Benomar, O. et al. Properties of oscillation modes in subgiant stars observed by Kepler. Astrophys. J. 767, 158 (2013).
Google Scholar
Mosser, B., Pinçon, C., Belkacem, K., Takata, M. & Vrard, M. Period spacings in red giants. III. Coupling factors of mixed modes. Astron. Astrophys. 600, A1 (2017).
Google Scholar
Montalbán, J., Miglio, A., Noels, A., Scuflaire, R. & Ventura, P. Seismic diagnostics of red giants: first comparison with stellar models. Astrophys. J. Lett. 721, L182–L188 (2010).
Google Scholar
Huber, D. et al. Asteroseismology of red giants from the first four months of Kepler data: global oscillation parameters for 800 stars. Astrophys. J. 723, 1607–1617 (2010).
Google Scholar
Corsaro, E. et al. Asteroseismology of the open clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry. Astrophys. J. 757, 190 (2012).
Google Scholar
Ong, J. M. & Basu, S. Semianalytic expressions for the isolation and coupling of mixed modes. Astrophys. J. 898, 127 (2020).
Google Scholar
Gilliland, R. L. et al. A search for solar-like oscillations in the stars of M67 with CCD ensemble photometry on a network of 4m telescopes. Astron. J. 106, 2441 (1993).
Google Scholar
Stello, D. et al. The K2 M67 study: revisiting old friends with K2 reveals oscillating red giants in the open cluster M67. Astrophys. J. 832, 133 (2016).
Google Scholar
Howell, S. B. et al. The K2 Mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398–408 (2014).
Google Scholar
Reyes, C. et al. Isochrone fitting of the open cluster M67 in the era of Gaia and improved model physics. Mon. Not. R. Astron. Soc. 532, 2860–2874 (2024).
Google Scholar
Salaris, M. & Cassisi, S. Evolution of Stars and Stellar Populations (Wiley, 2005).
Hekker, S. & Christensen-Dalsgaard, J. Giant star seismology. Astron. Astrophys. Rev. 25, 1 (2017).
Google Scholar
Roxburgh, I. W. The ratio of small to large separations of stellar p-modes. Astron. Astrophys. 434, 665–669 (2005).
Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. On the use of the ratio of small to large separations in asteroseismic model fitting. Astron. Astrophys. 560, A2 (2013).
Google Scholar
Cunha, M. S., Stello, K., Avelino, P. P., Christensen-Dalsgaard, J. & Townsend, R, H. D. Structural glitches near the cores of Red Giants Revealed by Oscillations in g-mode Period Spacings from Stellar Models. Astrophys. J. 805, 127 (2015).
Google Scholar
Basu, S. & Chaplin, W. J. Asteroseismic Data Analysis: Foundations and Techniques (Princeton Univ. Press, 2017).
Lindsay, C. J., Ong, J. M. J. & Basu, S. Near-core acoustic glitches are not oscillatory: consequences for asteroseismic probes of convective boundary mixing. Astrophys. J. 950, 19 (2023).
Google Scholar
Roxburgh, I. in SCORe’96 : Solar Convection and Oscillations and Their Relationship (eds Pijpers, F. P. et al.) 225, 23–50 (Springer, 1997).
Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).
Google Scholar
Khan, S. et al. The red-giant branch bump revisited: constraints on envelope overshooting in a wide range of masses and metallicities. Astrophys. J. 859, 156 (2018).
Google Scholar
Lindsay, C. J., Ong, J. M. J. & Basu, S. Mixed-mode asteroseismology of red giant stars through the luminosity bump. Astrophys. J. 931, 116 (2022).
Google Scholar
Miglio, A. Asteroseismology of red giants as a tool for studying stellar populations: first steps. In Red Giants as Probes of the Structure and Evolution of the Milky Way. Astrophysics and Space Science Proceedings (eds Miglio, A. et al.) Vol. 26, 11 (Springer, 2012).
Miglio, A. et al. Age dissection of the Milky Way discs: red giants in the Kepler field. Astron. Astrophys. 645, A85 (2021).
Google Scholar
Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).
Google Scholar
Chontos, A., Huber, D., Sayeed, M. & Yamsiri, P. pySYD: automated measurements of global asteroseismic parameters. J. Open Source Softw. 7, 3331 (2022).
Google Scholar
Huber, D. et al. Automated extraction of oscillation parameters for Kepler observations of solar-type stars. Commun. Asteroseismol. 160, 74 (2009).
Google Scholar
Kallinger, T. Release note: massive peak bagging of red giants in the Kepler field. Preprint at https://doi.org/10.48550/arXiv.1906.09428 (2019).
Townsend, R. H. D. & Teitler, S. A. gyre: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).
Google Scholar
Ball, W. H. & Gizon, L. A new correction of stellar oscillation frequencies for near-surface effects. Astron. Astrophys. 568, A123 (2014).
Google Scholar
Silva Aguirre, V. et al. Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. Astrophys. J. 835, 173 (2017).
Google Scholar
White, T. R. et al. Calculating asteroseismic diagrams for solar-like oscillations. Astrophys. J. 743, 161 (2011).
Google Scholar
Roxburgh, I. W. Asteroseismology of solar and stellar models. Astrophys. Space Sci. 328, 3–11 (2010).
Google Scholar
Mosser, B. et al. Characterization of the power excess of solar-like oscillations in red giants with Kepler. Astron. Astrophys. 537, A30 (2012).
Google Scholar
Gough, D. O. & Thompson, M. J. in Solar Interior and Atmosphere (eds Cox, A. N. et al.) 519–561 (Univ. Arizona Press, 1991).
García Pérez, A. E. et al. ASPCAP: the APOGEE Stellar Parameter and Chemical Abundances Pipeline. Astron. J. 151, 144 (2016).
Google Scholar
Jönsson, H. et al. APOGEE data and spectral analysis from SDSS data release 16: seven years of observations including first results from APOGEE-South. Astron. J. 160, 120 (2020).
Google Scholar
Reyes, C. Dataset for manuscript “Acoustic modes in M67 cluster stars trace deepening convective envelopes”. Zenodo https://doi.org/10.5281/zenodo.12617071 (2025).