Clinically relevant clot resolution via a thromboinflammation-on-a-chip – Nature

Bray, M. A., Sartain, S. E., Gollamudi, J. & Rumbaut, R. E. Microvascular thrombosis: experimental and clinical implications. Transl. Res. 225, 105–130 (2020).
Google Scholar
Conran, N. & De Paula, E. V. Thromboinflammatory mechanisms in sickle cell disease—challenging the hemostatic balance. Haematologica 105, 2380–2390 (2020).
Google Scholar
Gu, S. X. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18, 194–209 (2021).
Google Scholar
Jackson, S. P., Darbousset, R. & Schoenwaelder, S. M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133, 906–918 (2019).
Google Scholar
Needleman, L. et al. Ultrasound for lower extremity deep venous thrombosis: multidisciplinary recommendations from the Society of Radiologists in Ultrasound Consensus Conference. Circulation 137, 1505–1515 (2018).
Google Scholar
Canedo-Antelo, M. et al. Radiologic clues to cerebral venous thrombosis. Radiographics 39, 1611–1628 (2019).
Google Scholar
Schuijf, J. D. et al. CT imaging with ultra-high-resolution: opportunities for cardiovascular imaging in clinical practice. J. Cardiovasc. Comput. Tomogr. 16, 388–396 (2022).
Google Scholar
Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).
Google Scholar
Whyte, C. S. & Mutch, N. J. “Going with the flow” in modeling fibrinolysis. Front. Cardiovasc. Med. 9, 1054541 (2022).
Google Scholar
Bonnard, T., Law, L. S., Tennant, Z. & Hagemeyer, C. E. Development and validation of a high throughput whole blood thrombolysis plate assay. Sci. Rep. 7, 2346 (2017).
Google Scholar
Kuiper, G. J. et al. Validation of a modified thromboelastometry approach to detect changes in fibrinolytic activity. Thromb. J. 14, 1 (2016).
Google Scholar
Mutch, N. J. et al. The use of the Chandler loop to examine the interaction potential of NXY-059 on the thrombolytic properties of rtPA on human thrombi in vitro. Br. J. Pharmacol. 153, 124–131 (2008).
Google Scholar
Pandian, N. K. R., Mannino, R. G., Lam, W. A. & Jain, A. Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis. Curr. Opin. Biomed. Eng. 5, 29–34 (2018).
Google Scholar
Zhang, Y. S. et al. Bioprinted thrombosis-on-a-chip. Lab Chip 16, 4097–4105 (2016).
Google Scholar
Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018).
Google Scholar
Pober, J. S. & Sessa, W. C. Inflammation and the blood microvascular system. Cold Spring Harb. Perspect. Biol. 7, a016345 (2014).
Google Scholar
Suzuki, Y., Yasui, H., Brzoska, T., Mogami, H. & Urano, T. Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood 118, 3182–3185 (2011).
Google Scholar
Chapin, J. C. & Hajjar, K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 29, 17–24 (2015).
Google Scholar
Adams, S. A., Kelly, S. L., Kirsch, R. E., Robson, S. C. & Shephard, E. G. Role of neutrophil membrane proteases in fibrin degradation. Blood Coagul. Fibrinolysis 6, 693–702 (1995).
Google Scholar
Nicklas, J. M., Gordon, A. E. & Henke, P. K. Resolution of deep venous thrombosis: proposed immune paradigms. Int. J. Mol. Sci. 21, 2080 (2020).
Google Scholar
Varma, M. R. et al. Neutropenia impairs venous thrombosis resolution in the rat. J. Vasc. Surg. 38, 1090–1098 (2003).
Google Scholar
Ali, M. R. et al. Aspect of thrombolytic therapy: a review. ScientificWorldJournal 2014, 586510 (2014).
Google Scholar
The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28, 2109–2118 (1997).
Adams, H. P. Jr et al. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation 94, 1167–1174 (1996).
Google Scholar
Richardson, P. G. et al. The importance of endothelial protection: the emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant 56, 2889–2896 (2021).
Google Scholar
Mohty, M. et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group. Bone Marrow Transplant 55, 485–495 (2020).
Google Scholar
Tekgunduz, E. et al. Does defibrotide prophylaxis decrease the risk of acute graft versus host disease following allogeneic hematopoietic cell transplantation? Transfus. Apher. Sci. 54, 30–34 (2016).
Google Scholar
Richardson, P. G., Carreras, E., Iacobelli, M. & Nejadnik, B. The use of defibrotide in blood and marrow transplantation. Blood Adv. 2, 1495–1509 (2018).
Google Scholar
Buijsers, B., Yanginlar, C., Maciej-Hulme, M. L., de Mast, Q. & van der Vlag, J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. eBioMed. 59, 102969 (2020).
McLaughlin, K. et al. Low molecular weight heparin improves endothelial function in pregnant women at high risk of preeclampsia. Hypertension 69, 180–188 (2017).
Google Scholar
Shet, A. S., Lizarralde-Iragorri, M. A. & Naik, R. P. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 105, 2368–2379 (2020).
Google Scholar
Fredman, G. Resolving inflammation and pain of sickle cell. Blood 133, 190–191 (2019).
Google Scholar
Zhang, D., Xu, C., Manwani, D. & Frenette, P. S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127, 801–809 (2016).
Google Scholar
Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).
Google Scholar
Welsh, J. D. et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124, 1808–1815 (2014).
Google Scholar
Henke, P. K. et al. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J. Surg. Res. 99, 84–91 (2001).
Google Scholar
Sahoo, M., del Barrio, L., Miller, M. A. & Re, F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with species. PLoS Pathog. 10, e1004327 (2014).
Google Scholar
Szepanowski, R. D. et al. Thromboinflammatory challenges in stroke pathophysiology. Semin. Immunopathol. 45, 389–410 (2023).
Google Scholar
Noubouossie, D. F., Reeves, B. N., Strahl, B. D. & Key, N. S. Neutrophils: back in the thrombosis spotlight. Blood 133, 2186–2197 (2019).
Google Scholar
Peiseler, M. & Kubes, P. More friend than foe: the emerging role of neutrophils in tissue repair. J. Clin. Invest. 129, 2629–2639 (2019).
Google Scholar
Qi, H., Yang, S. & Zhang, L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front. Immunol. 8, 928 (2017).
Google Scholar
Wang, R. et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138, 91–103 (2021).
Google Scholar
Richardson, E. et al. Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert Opin. Ther. Targets 25, 423–433 (2021).
Google Scholar
Li, G., Hilgenfeld, R., Whitley, R. & De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449–475 (2023).
Google Scholar
Corbacioglu, S. et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379, 1301–1309 (2012).
Google Scholar
Richardson, P. G. et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100, 4337–4343 (2002).
Google Scholar
Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).
Google Scholar
Frame, D. et al. Defibrotide therapy for SARS-CoV-2 ARDS. Chest 162, 346–355 (2022).
Google Scholar
Ruggeri, A. et al. Use of defibrotide in patients with COVID-19 pneumonia: comparison of a phase II study and a matched real-world corhort control. Haematologia 109, 3261–3268 (2024).
Google Scholar
Morici, N. et al. Enoxaparin for thromboprophylaxis in hospitalized COVID-19 patients: the X-COVID-19 randomized trial. Eur. J. Clin. Invest. 52, e13735 (2022).
Google Scholar
Price, G. M. & Tien, J. Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. Methods Mol. Biol. 671, 281–293 (2011).
Google Scholar
Wang, C., Lu, H. & Schwartz, M. A. A novel in vitro flow system for changing flow direction on endothelial cells. J. Biomech. 45, 1212–1218 (2012).
Google Scholar