Formation and composition of Earth’s Hadean protocrust – Nature

Tonks, B. T. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993).
Google Scholar
Bizzarro, M., Baker, J. A., Haack, H. & Lundgaard, K. L. Rapid timescales for accrestion and melting of differentiated planetesimals inferred from 26Al–26Mg chronometry. Astonom. J. 632, L41 (2005).
Google Scholar
O’Neill, H. C. St. & Palme, H. in The Earth’s Mantle: Composition, Structure and Evolution (ed. Jackson, I.) 3–126 (Cambridge Univ. Press, 1998).
Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997).
Google Scholar
Davies, G. F. Dynamic Earth 458 (Cambridge Univ. Press, 1999).
Mare, E. R., Tomkins, A. G. & Godel, B. M. Restriction of parent body heating by metal-troilite melting: thermal models for the ordinary chondrites. Meteorit. Planet. Sci. 49, 636–651 (2014).
Google Scholar
Minarik, W. G., Ryerson, F. J. & Watson, E. B. Textural entrapment of core-forming melts. Science 272, 530–533 (1996).
Google Scholar
Hirschmann, M. M. Mantle solidus: experimental constraints and the effects of peridotite composition. Geochem. Geophys. Geosys. 1, GC000070 (2000).
Google Scholar
Jurewicz, A. J. G., Mittlefehldt, D. W. & Jones, J. J. Experimental partial melting of the Allende (CV) and Murchison (CM) chondrites and the origin of asteroidal basalts. Geochim. Cosmochim. Acta 57, 2123–2139 (1993).
Google Scholar
Agee, C. B., Li, J., Shannon, M. C. & Circone, S. Pressure–temperature phase diagram for the Allende meteorite. J. Geophys. Res. 100, 17725–17740 (1995).
Google Scholar
Rubie, D. C., Melosh, H. J., Reid, J. E., Liebske, C. & Righter, K. Mechanisms of metal–silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003).
Google Scholar
Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).
Google Scholar
Neri, A. et al. Textural evolution of metallic phases in a convecting magma ocean: a 3D microtomography study. Phys. Earth Planet. Inter. 319, 106771 (2021).
Google Scholar
O’Neill, H. S. & Palme, H. Collisional erosion and the non-chondritic composition of the terrestrial planets. Phil. Trans. R. Soc. Lond. 366, 4205–4238 (2008).
Google Scholar
O’Neill, C., Marchi, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).
Google Scholar
Caro, G. & Klein, T. in Timescales of Magmatic Processes (eds Dosseto, A. et al.) 9–51 (Wiley-Blackwell, 2011).
Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature 409, 175–178 (2001).
Google Scholar
Fisher, C. M. & Vervoort, J. D. Using the magmatic record to constrain the growth of continental crust—the Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 488, 79–91 (2018).
Google Scholar
Xie, M. & Xiao, Z. A new chronology from debiased crater densitites: Implications for the origin and evolution of lunar impactors. Earth Planet. Sci. Lett. 602, 117963 (2003).
Day, J. M. D. et al. Early formation of evolved asteroidal crust. Nature 457, 179–183 (2009).
Google Scholar
Usui, T., Jones, J. H. & Mittlefehldt, D. W. A partial melting study of an ordinary (H) chondrite composition with application to the unique achondrite Graves Nunataks 06128 and 06129. Meteor. Planet. Sci. 50, 759–781 (2015).
Google Scholar
Caro, G., Bourdon, B., Wood, B. J. & Corgne, A. Trace element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436, 246–249 (2005).
Google Scholar
Solomatov, V. S. & Stevenson, D. J. Nonfractional crystallization of a terrestrial magma ocean. J. Geophys. Res. 98, 5391–5406 (1993).
Google Scholar
Maurice, M. et al. Onset of solid‐state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. 122, 577–598 (2017).
Google Scholar
Turcotte D. L. & Schubert, G. Geodynamics: Applications of Continuum Physics to Geological Problems (John Wiley and Sons, 1982).
Obata, M. & Takazawa, E. Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle. J. Petrol. 45, 223–234 (2024).
Google Scholar
Shaw, D. M. Trace Elements in Magmas: A Theoretical Treatment (Cambridge Univ. Press, 2006).
Lodders, K. Relative atomic Solar System abundances, mass fractionations, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major meteorite groups. Space Sci. Rev. 217, 44 (2021).
Google Scholar
Wade, J. & Wood, B. J. The Earth’s ‘missing’ niobium may be in the core. Nature 409, 75–78 (2001).
Google Scholar
Jochum, K. P., Hofmann, A. W., Seufert, M., Stoll, B. & Polat, A. Niobium in planetary cores: consequences for the interpretation of terrestrial Nb systematics. Am. Geophys. Union V71C-03 (2002).
Munker, C., Fonseca, R. O. C. & Schulz, T. Silicate Earth’s missing niobium may have been sequestered into asteroidal cores. Nat. Geosci. 10, 822–826 (2017).
O’Nions, R. K. & McKenzie, D. Melting and continent generation. Earth Planet. Sci. Lett. 90, 449–456 (1988).
Google Scholar
Elkins-Tanton, L. T. Magma oceans in the inner Solar System. Ann. Rev. Earth Planet. Sci. 40, 113–139 (2012).
Google Scholar
Leitzke, F. P. et al. Evidence for a late missing late veneer from 182W and 142Nd systematics in the Archaean Sao Francisco Craton. Earth Planet. Sci. Lett. 647, 119022 (2024).
Google Scholar
Rushmer, T., Petford, N., Humayun, M. & Campbell, A. J. Fe–liquid segregation in deforming planetesimals: coupling core-forming compositions with transport phenomena. Earth Planet. Sci. Lett. 239, 185–202 (2005).
Google Scholar
Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010).
Google Scholar
Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audetat, A. Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures—implications for the origin of highly siderophyle element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84, 593–613 (2012).
Google Scholar
Walker, R. J. Siderophile elements in tracing planetary formation and evolution. Geochem. Perspect. 5, 1–145 (2016).
Google Scholar
Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974).
Google Scholar
Maier, W. et al. Progressive mixing of meteoric veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).
Google Scholar
Johnson, T. E., Brown, M., Gardiner, N. J., Kirkland, C. L. & Smithies, R. H. Earth’s first stable continents did not form by subduction. Nature 543, 239–243 (2017).
Google Scholar
Armstrong, R. L. The persistent myth of crustal growth. Aust. J. Earth Sci. 38, 613–630 (1991).
Google Scholar
Green, D. H. & Ringwood, A. E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967).
Google Scholar
Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 1–64 (Executive editors H.D. Holland and K.K. Turekian, Elsevier, 2003).
Davies, G. F. On the emergence of plate tectonics. Geology 20, 963–966 (1992).
Google Scholar
Campbell, I. H. & Taylor, S. R. No water, no granties, no continents. Geophys. Res. Lett. 10, 1061–1064 (1983).
Google Scholar
Arndt, N. How did the continental crust form: no basalt, no water, no granite. Precamb. Res. 397, 107196 (2023).
Google Scholar
Rapp, R. P. & Watson, E. B. Dehydration melting of metasbasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J. Petrol. 36, 891–931 (1995).
Google Scholar
Davidson, J., Turner, S., Dosseto, A. & Handley, H. Amphibole “sponge” in arc crust? Geology 35, 787–790 (2017).
Google Scholar
Turner, S., Rushmer, T., Reagan, M. & Moyen, J.-F. Heading down early on? Start of subduction on Earth. Geology 42, 139–142 (2014).
Google Scholar
Roth, A. S. G. et al. Combined 147,146Sm–143,142Nd constraints on the longevity and residence time of early terrestrial crust. Geochem. Geophys. Geosys. 15, 2329–2345 (2014).
Hyung, E. & Jacobsen, S. B. The 142Nd/144Nd variat1ons in mantle-derived rocks provide constraints on the stirring rate of the mantle from the Hadean to the present. Earth Atmos. Planet. Sci. 117, 14738–14744 (2020).
Google Scholar
Peters, B. J., Carlson, R. W., Day, J. M. D. & Horan, M. F. Hadean silicate differentiation preserved by anomalous 142Nd/144Nd ratios in the Reunion hotspot source. Nature 555, 89–93 (2018).
Google Scholar
Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005).
Google Scholar
Bédard, J. H. Stagnant lids and mantle overturns: implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci. Front. 9, 19–49 (2018).
O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).
Google Scholar
Turner, S., Wilde, S., Woerner, G., Schaefer, B. & Lai, Y.-J. An andesitic source for Jack Hills zircon supports onset of plate tectonics in the Hadean. Nat. Commun. https://doi.org/10.1038/s41467-020-14857-1 (2020).
Harrison, T. M. The Hadean crust: evidence from > 4 Ga zircons. Ann. Rev. Earth Planet. Sci. 37, 479–505 (2009).
Google Scholar
Caro, G., Bourdon, B., Birk, J.-L. & Moorbath, S. 146Sm–142Nd evidence for early differentiation of the Earth’s mantle. Nature 423, 428–432 (2003).
Google Scholar
Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).
Google Scholar
O’Neil, J., Carlson, R. W., Paquette, J.-L. & Francis, D. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precamb. Res. 220, 23–44 (2012).
Google Scholar
Taylor, S. R. & McLennan, S. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).
Google Scholar
Salters, V. J. M. & Stracke, A. The composition of the depleted mantle. Geochem. Geophys. Geosys, 5, GC000597 (2004).
Google Scholar
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Google Scholar
Peucker-Ehrenbrink, B. & Jahn, B.-M. Rhenium–osmium systematics and platinum group elelement concentrations: loess and the upper continental crust. Geochem. Geophys. Geosys. 2, GC000172 (2001).
Steenstra, E. S. et al. Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database. Icarus 335, 113391 (2020).
Google Scholar
McDonough, W. F. & Sun, S.-S. The composition of the Earth. Earth Planet. Sci. Lett. 120, 223–253 (1995).
Google Scholar
O’Neill, C., Turner, S. & Rushmer, T. The inception of plate tectonics: a record of failure. Phil. Trans. R. Soc. A https://doi.org/10.1098/rsta.2017.0414 (2018).
Robinson, J. A. C. & Wood, B. J. The depth of the garnet/spinel transition in fractionally melting peridotite. Earth Planet. Sci. Lett. 164, 277–284 (1998).
Google Scholar
Wood, B. J. & Blundy, J. D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate liquid. Contrib. Mineral. Petrol. 129, 166–181 (1997).
Google Scholar
Wood, B. J., Wade, J. & Kilburn, M. R. Core formation and the oxidation state of the Earth: additional constraints from Nb, V and Cr partitioning. Geochim. Cosmochim. Acta 72, 1415–1426 (2008).
Google Scholar
Mann, U., Frost, D. J. & Rubie, D. C. Evidence for high-pressure core–mantle differentiation from the metal–silicate partitioning of lithophile and weakly-siderophile elements. Geochim. Cosmochim. Acta 73, 7360–7386 (2009).
Google Scholar
Wade, J. & Wood, B. J. Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005).
Google Scholar
Frossard, P., Israel, C., Bouvier, A. & Boyet, M. Earth’s composition was modified by collisional erosion. Science 377, 1529–1532 (2022).
Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 273, 48–57 (2008).
Google Scholar
Fang, L. et al. Half-life and initial Solar System abundance of 146Sm determined from the oldest andesitic meteorite. Proc. Natl Acad. Sci. USA 119, e2120933119 (2022).
Google Scholar
O’Neill, C. & Turner, S. Formation and composition of the Earth’s Hadean protocrust. Zenodo https://doi.org/10.5281/zenodo.14614029 (2025).