Haploid facultative parthenogenesis in sunflower sexual reproduction – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Jacquier, N. M. A. et al. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nat. Plants 6, 610–619 (2020).

    PubMed 
    MATH 

    Google Scholar 

  • Fujita, M. K., Singhal, S., Brunes, T. O. & Maldonado, J. A. Evolutionary dynamics and consequences of parthenogenesis in vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191–214 (2020).

    MATH 

    Google Scholar 

  • Darwin, C. The Different Forms of Flowers on Plants of the Same Species (D. Appleton, 1897).

  • Hojsgaard, D. & Hörandl, E. The rise of apomixis in natural plant populations. Front. Plant Sci. 10, 436713 (2019).

    MATH 

    Google Scholar 

  • Majeský, Ľ., Vašut, R. J., Kitner, M. & Trávníček, B. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS ONE https://doi.org/10.1371/journal.pone.0041868 (2012).

  • Khanday, I., Skinner, D., Yang, B., Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565, 91–95 (2019).

    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • Underwood, C. J. et al. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat. Genet. 54, 84–93 (2022).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Fu, J. et al. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Mol. Plant 15, 577–580 (2022).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Kelliher, T. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105–109 (2017).

    PubMed 
    MATH 
    ADS 
    CAS 

    Google Scholar 

  • Liu, C. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol. Plant 10, 520–522 (2017).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Gilles, L. M. et al. Loss of pollen‐specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J. 36, 707–717 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chaikam, V. et al. Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor. Appl. Genet. 128, 159–171 (2015).

    PubMed 
    CAS 

    Google Scholar 

  • Sunflowerseed Explorer. USDA Foreign Agriculture Service https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2224000 (2024).

  • Jiang, C. et al. A reactive oxygen species burst causes haploid induction in maize. Mol. Plant 15, 943–955 (2022).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Leclercq, P. Une stérilité mâle cytoplasmique chez le Tournesol. In Annales de l’Amélioration des Plantes (ĽInstitut National de la Recherche Agronomique, 1969).

  • Bracey, M. H., Hanson, M. A., Masuda, K. R., Stevens, R. C. & Cravatt, B. F. Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298, 1793–1796 (2002).

    PubMed 
    ADS 
    CAS 

    Google Scholar 

  • Newcomb, W. The development of the embryo sac of sunflower Helianthus annuus after fertilization. Can. J. Bot. 51, 879–890 (1973).

    MATH 

    Google Scholar 

  • Miller, J. & Fick, G. Adaptation of reciprocal full‐sib selection in sunflower breeding using gibberellic acid induced male sterility 1. Crop Sci. 18, 161–162 (1978).

    MATH 
    CAS 

    Google Scholar 

  • Wang, H., Hou, H., Jan, C. C. & Chao, W. S. Irradiated pollen-induced oarthenogenesis for doubled haploid oroduction in sunflowers (Helianthus spp.). Plants 12, 2430 (2023).

    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Laurie, D. & Bennett, M. Early post-pollination events in hexaploid wheat × maize crosses. Sexual Plant Reprod. 3, 70–76 (1990).

    MATH 

    Google Scholar 

  • Patial, M., Pal, D., Thakur, A., Bana, R. S. & Patial, S. Doubled haploidy techniques in wheat (Triticum aestivum L.): an overview. Proc. Natl Acad. Sci. USA 89, 27–41 (2019).

    Google Scholar 

  • Dordas, C. Foliar boron application improves seed set, seed yield, and seed quality of alfalfa. Agron. J. 98, 907–913 (2006).

    MATH 
    CAS 

    Google Scholar 

  • Xin, P., Li, B., Zhang, H. & Hu, J. Optimization and control of the light environment for greenhouse crop production. Sci. Rep. 9, 8650 (2019).

    PubMed 
    PubMed Central 
    MATH 
    ADS 

    Google Scholar 

  • Rieu, I., Twell, D. & Firon, N. Pollen development at high temperature: from acclimation to collapse. Plant Physiol. 173, 1967–1976 (2017).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cashmore, A. R., Jarillo, J. A., Wu, Y.-J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    PubMed 
    MATH 
    ADS 
    CAS 

    Google Scholar 

  • Melchinger, A. E., Molenaar, W. S., Mirdita, V. & Schipprack, W. Colchicine alternatives for chromosome doubling in maize haploids for doubled‐haploid production. Crop Sci. 56, 559–569 (2016).

    CAS 

    Google Scholar 

  • Blakeslee, A. F. & Avery, A. G. Methods of inducing doubling of chromosomes in plants: by treatment with colchicine. J. Hered. https://doi.org/10.1093/oxfordjournals.jhered.a104294 (1937).

  • Hardham, A. & Gunning, B. Structure of cortical microtubule arrays in plant cells. J. Cell Biol. 77, 14–34 (1978).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Manzoor, A., Ahmad, T., Bashir, M. A., Hafiz, I. A. & Silvestri, C. Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants 8, 194 (2019).

    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Verdeil, J.-L., Alemanno, L., Niemenak, N. & Tranbarger, T. J. Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci. 12, 245–252 (2007).

    PubMed 
    CAS 

    Google Scholar 

  • Yu, J.-K. Advanced breeding technologies for accelerating genetic gain. Plant Breed. Biotechnol. 8, 203–210 (2020).

    MATH 

    Google Scholar 

  • Yao, L. et al. OsMATL mutation induces haploid seed formation in indica rice. Nat. Plants 4, 530–533 (2018).

    PubMed 
    CAS 

    Google Scholar 

  • Lv, J. et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397–1401 (2020).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Wang, N., Gent, J. I. & Dawe, R. K. Haploid induction by a maize cenh3 null mutant. Sci. Adv. 7, eabe2299 (2021).

    PubMed 
    PubMed Central 
    MATH 
    ADS 
    CAS 

    Google Scholar 

  • Zhong, Y. et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 20, 250–252 (2022).

    PubMed 
    MATH 

    Google Scholar 

  • Rao, K. S. & Rohini, V. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.): a simple protocol. Ann. Bot. 83, 347–354 (1999).

    CAS 

    Google Scholar 

  • Qu, Y. et al. Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.). PLoS ONE 15, e0228411 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shen, K., Qu, M. & Zhao, P. The roads to haploid embryogenesis. Plants 12, 243 (2023).

    PubMed 
    PubMed Central 
    MATH 
    CAS 

    Google Scholar 

  • Lv, J. & Kelliher, T. Recent advances in engineering of in vivo haploid induction systems. Methods Mol. Biol. 2653, 365–383 (2023).

    PubMed 
    MATH 
    CAS 

    Google Scholar 

  • Ferrie, A. & Caswell, K. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss. Org. Cult. 104, 301–309 (2011).

    Google Scholar 

  • Todorova, M., Ivanov, P., Shindrova, P., Christov, M. & Ivanova, I. Doubled haploid production of sunflower (Helianthus annuus L.) through irradiated pollen-induced parthenogenesis. Euphytica 97, 249–254 (1997).

    Google Scholar 

  • Davis, G. L. The life history of Podolepis jaceoides (Sims) Voss-II. Megasporogenesis, female gametophyte and embryogeny. Phytomorphology 11, 206–219 (1961).

    MATH 

    Google Scholar 

  • Cyprys, P., Lindemeier, M. & Sprunck, S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nat. Plants 5, 253–257 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Kallamadi, P. R. & Mulpuri, S. Ploidy analysis of Helianthus species by flow cytometry and its use in hybridity confirmation. Nucleus 59, 123–130 (2016).

    Google Scholar 

  • Garcés, R. et al. Characterization of sunflower seed and oil wax ester composition by GC/MS, a final evaluation. LWT 173, 114365 (2023).

    MATH 

    Google Scholar 

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • Silverman, B. W. Density Estimation for Statistics and Data Analysis (Routledge, 2018).

  • Duncan, K. E., Czymmek, K. J., Jiang, N., Thies, A. C. & Topp, C. N. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. Plant Physiol. 188, 831–845 (2022).

    PubMed 
    CAS 

    Google Scholar 

  • Deng, J. et al. Concept and methodology of characterising infrared radiative performance of urban trees using tree crown spectroscopy. Build. Environ. 157, 380–390 (2019).

    MATH 

    Google Scholar 

  • Aznar‐Moreno, J. A. et al. Sunflower (Helianthus annuus) long‐chain acyl‐coenzyme A synthetases expressed at high levels in developing seeds. Physiol. Plant. 150, 363–373 (2014).

    PubMed 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Smudge before flight
    Smudge before flight
    Common genetic variants contribute more to rare diseases than previously thought
    Common genetic variants contribute more to rare diseases than previously thought
    The road to CAR-T-cell therapy for lethal childhood brain tumours
    The road to CAR-T-cell therapy for lethal childhood brain tumours
    India–Eurasia convergence speed-up by passive-margin sediment subduction - Nature
    India–Eurasia convergence speed-up by passive-margin sediment subduction – Nature
    ‘We need to be ready for a new world’: scientists globally react to Trump election win
    ‘We need to be ready for a new world’: scientists globally react to Trump election win
    What should we do if AI becomes conscious? These scientists say it’s time for a plan
    What should we do if AI becomes conscious? These scientists say it’s time for a plan
    Headline Central | © 2025 | News