Metal–support frontier orbital interactions in single-atom catalysis – Nature

Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).
Google Scholar
Kaiser, S. K. et al. Single-atom catalysts across the periodic table. Chem. Rev. 120, 11703–11809 (2020).
Google Scholar
Hulva, J. et al. Unraveling CO adsorption on model single-atom catalysts. Science 371, 375–379 (2021).
Google Scholar
Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc. Chem. Res. 47, 783–792 (2014).
Google Scholar
Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).
Wang, C.-M., Wang, Y.-D., Ge, J.-W. & Xie, Z.-K. Reaction: industrial perspective on single-atom catalysis. Chem 5, 2736–2737 (2019).
Google Scholar
Xiang, H., Feng, W. & Chen, Y. Single‐atom catalysts in catalytic biomedicine. Adv. Mater. 32, 1905994 (2020).
Google Scholar
Li, S. et al. Interplay between the spin-selection rule and frontier orbital theory in O2 activation and CO oxidation by single-atom-sized catalysts on TiO2(110). Phys. Chem. Chem. Phys. 18, 24872–24879 (2016).
Google Scholar
Fu, Z., Yang, B. & Wu, R. Understanding the activity of single-atom catalysis from frontier orbitals. Phys. Rev. Lett. 125, 156001 (2020).
Google Scholar
Spivey, T. D. & Holewinski, A. Selective interactions between free-atom-like d-states in single-atom alloy catalysts and near-frontier molecular orbitals. J. Am. Chem. Soc. 143, 11897–11902 (2021).
Google Scholar
Ren, Y. et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 10, 4500 (2019).
Google Scholar
Wang, L. et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 143, 18854–18858 (2021).
Google Scholar
Wang, Y. et al. CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways. J. Am. Chem. Soc. 138, 10467–10476 (2016).
Google Scholar
Zhou, X. et al. Unraveling charge state of supported Au single-atoms during CO oxidation. J. Am. Chem. Soc. 140, 554–557 (2018).
Google Scholar
Camellone, M. F. & Fabris, S. Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts: activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc. 131, 10473–10483 (2009).
Google Scholar
Lang, R. et al. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020).
Google Scholar
O’Connor, N. J., Jonayat, A. S. M., Janik, M. J. & Senftle, T. P. Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nat. Catal. 1, 531–539 (2018).
Campbell, C. T. Electronic perturbations. Nat. Chem. 4, 597–598 (2012).
Google Scholar
Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).
Google Scholar
Yang, J., Li, W., Wang, D. & Li, Y. Electronic metal–support interaction of single‐atom catalysts and applications in electrocatalysis. Adv. Mater. 32, 2003300 (2020).
Google Scholar
Chen, C. et al. Zero‐valent palladium single‐atoms catalysts confined in black phosphorus for efficient semi‐hydrogenation. Adv. Mater. 33, 2008471 (2021).
Google Scholar
Chen, Z. et al. Single-atom heterogeneous catalysts based on distinct carbon nitride scaffolds. Natl Sci. Rev. 5, 642–652 (2018).
Google Scholar
Hammer, B., Morikawa, Y. & Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).
Google Scholar
Houk, K. N. Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8, 361–369 (1975).
Google Scholar
Fukui, K. The role of frontier orbitals in chemical reactions (Nobel Lecture). Angew. Chem. Int. Ed. 21, 801–809 (1982).
Google Scholar
Greiner, M. T. et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 10, 1008–1015 (2018).
Google Scholar
George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).
Google Scholar
Jacobsson, T. J. & Edvinsson, T. Photoelectrochemical determination of the absolute band edge positions as a function of particle size for ZnO quantum dots. J. Phys. Chem. C 116, 15692–15701 (2012).
Google Scholar
Xu, H.-Q. et al. Visible-light photoreduction of CO2 in a metal–organic framework: boosting electron–hole separation via electron trap states. J. Am. Chem. Soc. 137, 13440–13443 (2015).
Google Scholar
Linsebigler, A. L., Lu, G. & Yates, J. T. Jr Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995).
Google Scholar
Lear, T. et al. The application of infrared spectroscopy to probe the surface morphology of alumina-supported palladium catalysts. J. Chem. Phys. 123, 174706 (2005).
Google Scholar
Davidson, E. R., Kunze, K. L., Machado, F. B. C. & Chakravorty, S. J. The transition metal-carbonyl bond. Acc. Chem. Res. 26, 628–635 (1993).
Google Scholar
Borodziński, A. & Bond, G. C. Selective hydrogenation of ethyne in ethene‐rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. Sci. Eng. 48, 91–144 (2006).
Hu, M. et al. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Res. 11, 905–912 (2017).
Google Scholar
Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5, 3717–3725 (2015).
Google Scholar
Kumar, G., Lau, S. L. J., Krcha, M. D. & Janik, M. J. Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal. 6, 1812–1821 (2016).
Google Scholar
Zhang, W. et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 10, 12932–12942 (2020).
Google Scholar
Gorin, D. J., Sherry, B. D. & Toste, F. D. Ligand effects in homogeneous Au catalysis. Chem. Rev. 108, 3351–3378 (2008).
Google Scholar
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).
Google Scholar
Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).
Google Scholar
Bourgeat-Lami, E. & Lang, J. Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. effect of silica size and concentration on the morphology of silica–polystyrene composite particles. J. Colloid Interface Sci. 210, 281–289 (1998).
Google Scholar
Guo, J. et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl. Catal. A Gen. 273, 75–82 (2004).
Google Scholar
Theofanidis, S. A., Galvita, V. V., Poelman, H. & Marin, G. B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: role of Fe. ACS Catal. 5, 3028–3039 (2015).
Google Scholar
Cornu, L., Gaudon, M. & Jubera, V. ZnAl2O4 as a potential sensor: variation of luminescence with thermal history. J. Mater. Chem. C 1, 5419–5428 (2013).
Google Scholar
Zhang, J. et al. Deep UV transparent conductive oxide thin films realized through degenerately doped wide-bandgap gallium oxide. Cell Rep. Phys. Sci. 3, 100801 (2022).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Maintz, S., Deringer, V. L., Tchougréeff, A. L. & Dronskowski, R. Analytic projection from plane‐wave and PAW wavefunctions and application to chemical‐bonding analysis in solids. J. Comput. Chem. 34, 2557–2567 (2013).
Google Scholar
Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).
Google Scholar
Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comp. Mater. Sci. 36, 354–360 (2006).
Google Scholar
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Google Scholar
Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).
Google Scholar
Gaussian 16, Revision C.01 (Theoretical Chemistry Institute, Univ. Wisconsin, 2018).
Glendening, E. D. & Weinhold, F. Natural resonance theory: I. General formalism. J. Comput. Chem. 19, 593–609 (1998).
Google Scholar
Filot, I. A. W., van Santen, R. A. & Hensen, E. J. M. The optimally performing Fischer–Tropsch catalyst. Angew. Chem. Int. Ed. 53, 12746–12750 (2014).
Google Scholar
Filot, I. A. W. et al. First-principles-based microkinetics simulations of synthesis gas conversion on a stepped rhodium surface. ACS Catal. 5, 5453–5467 (2015).
Google Scholar
Stegelmann, C., Andreasen, A. & Campbell, C. T. Degree of rate control: how much the energies of intermediates and transition states control rates. J. Am. Chem. Soc. 131, 8077–8082 (2009).
Google Scholar