Millimetre-scale bioresorbable optoelectronic systems for electrotherapy – Nature

Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).
Google Scholar
Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).
Google Scholar
Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).
Google Scholar
Lumia, F. J. & Rios, J. C. Temporary transvenous pacemaker therapy: an analysis of complications. Chest 64, 604–608 (1973).
Google Scholar
Wood, M. A. & Ellenbogen, K. A. Cardiac pacemakers from the patient’s perspective. Circulation 105, 2136–2138 (2002).
Google Scholar
Bar-Cohen, Y. et al. Minimally invasive implantation of a micropacemaker into the pericardial space. Circ. Arrhythm. Electrophysiol. 11, e006307 (2018).
Google Scholar
Zhao, J. et al. Permanent epicardial pacing in neonates and infants less than 1 year old: 12-year experience at a single center. Transl. Pediatr. 11, 825–833 (2022).
Google Scholar
Wildbolz, M., Dave, H., Weber, R., Gass, M. & Balmer, C. Pacemaker implantation in neonates and infants: favorable outcomes with epicardial pacing systems. Pediatr. Cardiol. 41, 910–917 (2020).
Google Scholar
Wilhelm, M. J. et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation. Ann. Thorac. Surg. 64, 1707–1712 (1997).
Google Scholar
Donovan, K. D. & Lee, K. Y. Indications for and complications of temporary transvenous cardiac pacing. Anaesth. Intensive Care 13, 63–70 (1985).
Google Scholar
BRAUN, M. U. et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection—a prospective and controlled study. Pacing Clin. Electrophysiol. 29, 875–879 (2006).
Google Scholar
Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).
Google Scholar
Lyu, H. et al. Synchronized biventricular heart pacing in a closed-chest porcine model based on wirelessly powered leadless pacemakers. Sci. Rep. 10, 2067 (2020).
Google Scholar
Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).
Google Scholar
Wang, S. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023).
Google Scholar
Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).
Google Scholar
Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9, 1901342 (2020).
Google Scholar
Wang, L. et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6, eabc6686 (2020).
Google Scholar
Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. USA 120, e2217734120 (2023).
Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).
Google Scholar
Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, 1801819 (2018).
Google Scholar
Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).
Google Scholar
Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007).
Google Scholar
Schauer, A. et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 14, 7776 (2021).
Google Scholar
Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).
Google Scholar
Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).
Google Scholar
Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).
Google Scholar
Li, G. et al. Flexible transient phototransistors by use of wafer‐compatible transferred silicon nanomembranes. Small 14, e1802985 (2018).
Google Scholar
Li, G. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6, eaaz6511 (2020).
Google Scholar
López Ayerbe, J. et al. Temporary pacemakers: current use and complications. Rev. Esp. Cardiol. Engl. Ed. 57, 1045–1052 (2004).
Google Scholar
Yu, L., Nina-Paravecino, F., Kaeli, D. & Fang, Q. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt. 23, 1 (2018).
Google Scholar
Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).
Google Scholar
Taroni, P., Pifferi, A., Torricelli, A., Comelli, D. & Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2, 124–129 (2003).
Google Scholar
Khan, R., Gul, B., Khan, S., Nisar, H. & Ahmad, I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 33, 102192 (2021).
Google Scholar
Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995).
Google Scholar
Firbank, M., Hiraoka, M., Essenpreis, M. & Delpy, D. T. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38, 503–510 (1993).
Google Scholar
Rahko, P. S. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 761–764 (2008).
Google Scholar
Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).
Google Scholar
Yin, R. T. et al. Open thoracic surgical implantation of cardiac pacemakers in rats. Nat. Protoc. 18, 374–395 (2023).
Google Scholar
Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).
Google Scholar
Shea, J. B. & Sweeney, M. O. Cardiac resynchronization therapy a patient’s guide. Circulation 108, e64–e66 (2003).
Connolly, S. J., Kerr, C., Gent, M. & Yusuf, S. Dual-chamber versus ventricular pacing. Circulation 94, 578–583 (1996).
Google Scholar
Rodés-Cabau, J., Muntané-Carol, G. & Philippon, F. Managing conduction disturbances after TAVR: toward a tailored strategy. JACC Cardiovasc. Interv. 14, 992–994 (2021).
Google Scholar
Urena, M. & Rodés-Cabau, J. Conduction abnormalities: the true Achilles’ heel of transcatheter aortic valve replacement? JACC Cardiovasc. Interv. 9, 2217–2219 (2016).
Google Scholar
Pagnesi, M. et al. Incidence, predictors, and prognostic impact of new permanent pacemaker implantation after TAVR with self-expanding valves. JACC Cardiovasc. Interv. 16, 2004–2017 (2023).
Google Scholar
Reiter, C. et al. Delayed total atrioventricular block after transcatheter aortic valve replacement assessed by implantable loop recorders. JACC Cardiovasc. Interv. 14, 2723–2732 (2021).
Google Scholar
Muntané-Carol, G. et al. Ambulatory electrocardiographic monitoring following minimalist transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 14, 2711–2722 (2021).
Google Scholar
Krishnaswamy, A. et al. Feasibility and safety of same-day discharge following transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 15, 575–589 (2022).
Google Scholar
Millimetre-scale, bioresorbable optoelectronic systems for minimally invasive electrotherapy. Code Ocean https://codeocean.com/capsule/9406347/tree/v1 (2025).