Near-field photon entanglement in total angular momentum – Nature

Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).
Google Scholar
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).
Google Scholar
Karimi, E. et al. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 82, 022115 (2010).
Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).
Google Scholar
Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).
Google Scholar
Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).
Google Scholar
Li, C.-F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys. Rev. A 80, 063814 (2009).
Google Scholar
Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).
Google Scholar
Krenn, M., Tischler, N. & Zeilinger, A. On small beams with large topological charge. New J. Phys. 18, 033012 (2016).
Google Scholar
Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).
Google Scholar
Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).
Google Scholar
Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).
Google Scholar
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Google Scholar
Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).
Google Scholar
O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).
Google Scholar
Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649 (2020).
Google Scholar
Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).
Google Scholar
Krenn, M., Hochrainer, A., Lahiri, M. & Zeilinger, A. Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017).
Google Scholar
Halder, M. et al. Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007).
Google Scholar
Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).
Google Scholar
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Google Scholar
Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).
Google Scholar
Molina-Terriza, G., Torres, J. P. & Torner, L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001).
Google Scholar
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).
Google Scholar
Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002).
Google Scholar
Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).
Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).
Google Scholar
Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).
Google Scholar
Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).
Google Scholar
Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).
Google Scholar
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).
Google Scholar
Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).
Google Scholar
Ostrovsky, E., Cohen, K., Tsesses, S., Gjonaj, B. & Bartal, G. Nanoscale control over optical singularities. Optica 5, 283 (2018).
Google Scholar
Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin–orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).
Google Scholar
Van Enk, S. J. & Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 41, 963–977 (1994).
Google Scholar
Das, P., Yang, L.-P. & Jacob, Z. What are the quantum commutation relations for the total angular momentum of light? tutorial. J. Opt. Soc. Am. B 41, 1764 (2024).
Google Scholar
Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).
Google Scholar
Kher-Aldeen, J. et al. Dynamic control and manipulation of near-fields using direct feedback. Light Sci. Appl. 13, 298 (2024).
Google Scholar
Lopez-Mago, D. & Gutiérrez-Vega, J. C. Shaping Bessel beams with a generalized differential operator approach. J. Opt. 18, 095603 (2016).
Google Scholar
Soares, W. C., Caetano, D. P. & Hickmann, J. M. Hermite–Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. Opt. Express 14, 4577 (2006).
Google Scholar
Frischwasser, K. et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photon. 15, 442–448 (2021).
Google Scholar
Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).
Google Scholar
Dieleman, F., Tame, M. S., Sonnefraud, Y., Kim, M. S. & Maier, S. A. Experimental verification of entanglement generated in a plasmonic system. Nano Lett. 17, 7455–7461 (2017).
Google Scholar
Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).
Google Scholar
Fakonas, J. S., Mitskovets, A. & Atwater, H. A. Path entanglement of surface plasmons. New J. Phys. 17, 023002 (2015).
Google Scholar
Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).
Google Scholar
Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).
Google Scholar
Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).
Google Scholar
Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572–587 (2017).
Google Scholar
Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335 (2011).
Google Scholar
Olivieri, L. et al. Terahertz nonlinear ghost imaging via plane decomposition: toward near-field micro-volumetry. ACS Photon. 10, 1726–1734 (2023).
Google Scholar
Ryczkowski, P., Barbier, M., Friberg, A. T., Dudley, J. M. & Genty, G. Ghost imaging in the time domain. Nat. Photon. 10, 167–170 (2016).
Google Scholar
Popov, E. (ed.) Gratings: Theory and Numeric Applications, Second Revisited Edition (Institut Fresnel, 2014).
Johnson, K. C. Projection operator method for biperiodic diffraction gratings with anisotropic/bianisotropic generalizations. J. Opt. Soc. Am. A 31, 1698 (2014).
Google Scholar
Hong, M., Dawkins, R. B., Bertoni, B., You, C. & Magaña-Loaiza, O. S. Nonclassical near-field dynamics of surface plasmons. Nat. Phys. 20, 830–835 (2024).
Google Scholar
Lawrie, B. J., Evans, P. G. & Pooser, R. C. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. Phys. Rev. Lett. 110, 156802 (2013).
Google Scholar
Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).
Google Scholar
Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).
Google Scholar
Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).
Google Scholar
Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).
Google Scholar
Ren, X. F., Guo, G. P., Huang, Y. F., Li, C. F. & Guo, G. C. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhys. Lett. 76, 753–759 (2006).
Google Scholar
Machado, F., Rivera, N., Buljan, H., Soljačić, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photon. 5, 3064–3072 (2018).
Google Scholar
Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).
Google Scholar
Spektor, G., David, A., Gjonaj, B., Bartal, G. & Orenstein, M. Metafocusing by a metaspiral plasmonic lens. Nano Lett. 15, 5739–5743 (2015).
Google Scholar
Kam, A. et al. Non-classical correlation between mode-entangled pairs of surface plasmon polaritons. In Proc. CLEO: Fundamental Science FF2C.5 (Optica Publishing Group, 2023).
Wright, W. E. Parallelization of Bresenham’s line and circle algorithms. IEEE Comput. Graph. Appl. 10, 60–67 (1990).
Google Scholar
Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).
Ilin, Y. & Arad, I. Learning a quantum channel from its steady-state. New J. Phys. 26, 073003 (2024).
Google Scholar
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).
Google Scholar
Loredo, J. C. et al. Generation of non-classical light in a photon-number superposition. Nat. Photon. 13, 803–808 (2019).
Google Scholar
Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).
Google Scholar
Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).
Google Scholar
Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).
Google Scholar
Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006 (2017).
Google Scholar
Reid, M. D. et al. The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).
Google Scholar