Near-field photon entanglement in total angular momentum – Nature

You May Be Interested In:AI’s power play: the high-stakes race for energy capacity | Computer Weekly


  • Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Karimi, E. et al. Spin-orbit hybrid entanglement of photons and quantum contextuality. Phys. Rev. A 82, 022115 (2010).

  • Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    ADS 
    MATH 

    Google Scholar 

  • Gorodetski, Y., Niv, A., Kleiner, V. & Hasman, E. Observation of the spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Li, C.-F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization. Phys. Rev. A 80, 063814 (2009).

    ADS 

    Google Scholar 

  • Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Krenn, M., Tischler, N. & Zeilinger, A. On small beams with large topological charge. New J. Phys. 18, 033012 (2016).

    ADS 
    MATH 

    Google Scholar 

  • Defienne, H., Reichert, M. & Fleischer, J. W. General model of photon-pair detection with an image sensor. Phys. Rev. Lett. 120, 203604 (2018).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ndagano, B. et al. Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera. npj Quantum Inf. 6, 94 (2020).

    ADS 

    Google Scholar 

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    ADS 
    MATH 

    Google Scholar 

  • Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. Optica 7, 1649 (2020).

    ADS 

    Google Scholar 

  • Harrow, A. W. & Montanaro, A. Quantum computational supremacy. Nature 549, 203–209 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Krenn, M., Hochrainer, A., Lahiri, M. & Zeilinger, A. Entanglement by path identity. Phys. Rev. Lett. 118, 080401 (2017).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Halder, M. et al. Entangling independent photons by time measurement. Nat. Phys. 3, 692–695 (2007).

    CAS 
    MATH 

    Google Scholar 

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Molina-Terriza, G., Torres, J. P. & Torner, L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys. Rev. Lett. 88, 013601 (2001).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Simon, C. & Pan, J.-W. Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002).

    ADS 
    PubMed 

    Google Scholar 

  • Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014).

    Google Scholar 

  • Fabre, C. & Treps, N. Modes and states in quantum optics. Rev. Mod. Phys. 92, 035005 (2020).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to–orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Beth, R. A. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS 
    MATH 

    Google Scholar 

  • Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Fickler, R. et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nat. Commun. 5, 4502 (2014).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ostrovsky, E., Cohen, K., Tsesses, S., Gjonaj, B. & Bartal, G. Nanoscale control over optical singularities. Optica 5, 283 (2018).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin–orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Van Enk, S. J. & Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 41, 963–977 (1994).

    ADS 
    MATH 

    Google Scholar 

  • Das, P., Yang, L.-P. & Jacob, Z. What are the quantum commutation relations for the total angular momentum of light? tutorial. J. Opt. Soc. Am. B 41, 1764 (2024).

    CAS 
    MATH 

    Google Scholar 

  • Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kher-Aldeen, J. et al. Dynamic control and manipulation of near-fields using direct feedback. Light Sci. Appl. 13, 298 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lopez-Mago, D. & Gutiérrez-Vega, J. C. Shaping Bessel beams with a generalized differential operator approach. J. Opt. 18, 095603 (2016).

    ADS 
    MATH 

    Google Scholar 

  • Soares, W. C., Caetano, D. P. & Hickmann, J. M. Hermite–Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. Opt. Express 14, 4577 (2006).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Frischwasser, K. et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat. Photon. 15, 442–448 (2021).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Milione, G., Sztul, H. I., Nolan, D. A. & Alfano, R. R. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Dieleman, F., Tame, M. S., Sonnefraud, Y., Kim, M. S. & Maier, S. A. Experimental verification of entanglement generated in a plasmonic system. Nano Lett. 17, 7455–7461 (2017).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Tame, M. S. et al. Quantum plasmonics. Nat. Phys. 9, 329–340 (2013).

    CAS 
    MATH 

    Google Scholar 

  • Fakonas, J. S., Mitskovets, A. & Atwater, H. A. Path entanglement of surface plasmons. New J. Phys. 17, 023002 (2015).

    ADS 

    Google Scholar 

  • Dowling, J. P. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Howell, J. C., Bennink, R. S., Bentley, S. J. & Boyd, R. W. Realization of the Einstein–Podolsky–Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. Phys. Rev. Lett. 92, 210403 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • Bavaresco, J. et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat. Phys. 14, 1032–1037 (2018).

    CAS 
    MATH 

    Google Scholar 

  • Dai, D. Silicon nanophotonic integrated devices for on-chip multiplexing and switching. J. Lightwave Technol. 35, 572–587 (2017).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335 (2011).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Olivieri, L. et al. Terahertz nonlinear ghost imaging via plane decomposition: toward near-field micro-volumetry. ACS Photon. 10, 1726–1734 (2023).

    CAS 
    MATH 

    Google Scholar 

  • Ryczkowski, P., Barbier, M., Friberg, A. T., Dudley, J. M. & Genty, G. Ghost imaging in the time domain. Nat. Photon. 10, 167–170 (2016).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Popov, E. (ed.) Gratings: Theory and Numeric Applications, Second Revisited Edition (Institut Fresnel, 2014).

  • Johnson, K. C. Projection operator method for biperiodic diffraction gratings with anisotropic/bianisotropic generalizations. J. Opt. Soc. Am. A 31, 1698 (2014).

    ADS 
    MATH 

    Google Scholar 

  • Hong, M., Dawkins, R. B., Bertoni, B., You, C. & Magaña-Loaiza, O. S. Nonclassical near-field dynamics of surface plasmons. Nat. Phys. 20, 830–835 (2024).

    CAS 
    MATH 

    Google Scholar 

  • Lawrie, B. J., Evans, P. G. & Pooser, R. C. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. Phys. Rev. Lett. 110, 156802 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huck, A. et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett. 102, 246802 (2009).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Fasel, S. et al. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett. 94, 110501 (2005).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, X. F., Guo, G. P., Huang, Y. F., Li, C. F. & Guo, G. C. Plasmon-assisted transmission of high-dimensional orbital angular-momentum entangled state. Europhys. Lett. 76, 753–759 (2006).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Machado, F., Rivera, N., Buljan, H., Soljačić, M. & Kaminer, I. Shaping polaritons to reshape selection rules. ACS Photon. 5, 3064–3072 (2018).

    CAS 
    MATH 

    Google Scholar 

  • Bliokh, K. Y., Niv, A., Kleiner, V. & Hasman, E. Geometrodynamics of spinning light. Nat. Photon. 2, 748–753 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Spektor, G., David, A., Gjonaj, B., Bartal, G. & Orenstein, M. Metafocusing by a metaspiral plasmonic lens. Nano Lett. 15, 5739–5743 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kam, A. et al. Non-classical correlation between mode-entangled pairs of surface plasmon polaritons. In Proc. CLEO: Fundamental Science FF2C.5 (Optica Publishing Group, 2023).

  • Wright, W. E. Parallelization of Bresenham’s line and circle algorithms. IEEE Comput. Graph. Appl. 10, 60–67 (1990).

    MATH 

    Google Scholar 

  • Gareth, J., Daniela, W., Trevor, H. & Robert, T. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

  • Ilin, Y. & Arad, I. Learning a quantum channel from its steady-state. New J. Phys. 26, 073003 (2024).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

    MATH 

    Google Scholar 

  • Loredo, J. C. et al. Generation of non-classical light in a photon-number superposition. Nat. Photon. 13, 803–808 (2019).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Crespi, A. et al. Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566 (2011).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006 (2017).

    ADS 
    MATH 

    Google Scholar 

  • Reid, M. D. et al. The Einstein–Podolsky–Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727–1751 (2009).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    An operating system for executing applications on quantum network nodes - Nature
    An operating system for executing applications on quantum network nodes – Nature
    Solar-powered desalination
    Solar-powered desalination
    Brain-computer interfaces face a critical test
    The Download: brain-computer interfaces, and teaching an AI model to give therapy
    ‘Targeted and belittled’: scientists at US environmental agency speak out as layoffs begin
    ‘Targeted and belittled’: scientists at US environmental agency speak out as layoffs begin
    Designing the future of entertainment
    Designing the future of entertainment
    Paradoxical link between senescent cell state and liver cancer resolved
    Paradoxical link between senescent cell state and liver cancer resolved
    Headline Central | © 2025 | News