Photoinduced copper-catalysed deracemization of alkyl halides – Nature

Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).
Google Scholar
Großkopf, J. & Bach, T. Catalytic photochemical deracemization via short-lived intermediates. Angew. Chem. Int. Edn 62, e202308241 (2023).
Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).
Google Scholar
Großkopf, J. et al. Photochemical deracemization at sp3-hybridized carbon centers via a reversible hydrogen atom transfer. J. Am. Chem. Soc. 143, 21241–21245 (2021).
Google Scholar
Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).
Google Scholar
Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).
Google Scholar
Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).
Google Scholar
Wen, L. et al. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 382, 458–464 (2023).
Google Scholar
Blackmond, D. G. “If pigs could fly” chemistry: a tutorial on the principle of microscopic reversibility. Angew. Chem. Int. Edn 48, 2648–2654 (2009).
Google Scholar
Li, X. et al. Photochemically induced ring opening of spirocyclopropyl oxindoles: evidence for a triplet 1,3-diradical intermediate and deracemization by a chiral sensitizer. Angew. Chem. Int. Edn 59, 21640–21647 (2020).
Google Scholar
Wang, J. et al. Enantioselective [2 + 2] photocycloreversion enables de novo deracemization synthesis of cyclobutanes. J. Am. Chem. Soc. 146, 22840–22849 (2024).
Google Scholar
Cossy, J. (ed.) Comprehensive Chirality (Academic, 2024).
Mizuta, S., Kitamura, K., Kitagawa, A., Yamaguchi, T. & Ishikawa, T. Silver-promoted fluorination reactions of α-bromoamides. Chem. Eur. J. 27, 5930–5935 (2021).
Google Scholar
Akagawa, H. et al. Carboxamide-directed stereospecific couplings of chiral tertiary alkyl halides with terminal alkynes. ACS Catal. 12, 9831–9838 (2022).
Google Scholar
Ishida, S., Takeuchi, K., Taniyama, N., Sunada, Y. & Nishikata, T. Copper-catalyzed amination of congested and functionalized α-bromocarboxamides with either amines or ammonia at room temperature. Angew. Chem. Int. Edn 56, 11610–11614 (2017).
Google Scholar
Fantinati, A., Zanirato, V., Marchetti, P. & Trapella, C. The fascinating chemistry of α-haloamides. ChemistryOpen 9, 100–170 (2020).
Google Scholar
Nishikata, T. α-Halocarbonyls as a valuable functionalized tertiary alkyl source. ChemistryOpen 13, e202400108 (2024).
Google Scholar
Gribble, G. W. Naturally Occurring Organohalogen Compounds—A Comprehensive Review (Springer, 2023).
Gribble, G. W. Biological activity of recently discovered halogenated marine natural products. Mar. Drugs 13, 4044–4136 (2015).
Google Scholar
Chiodi, D. & Ishihara, Y. “Magic chloro”: profound effects of the chlorine atom in drug discovery. J. Med. Chem. 66, 5305–5331 (2023).
Google Scholar
Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A. & Seelig, A. Halogenation of drugs enhances membrane binding and permeation. ChemBioChem 5, 676–684 (2004).
Google Scholar
Hernandes, M. Z., Cavalcanti, S. M. T., Moreira, D. R. M., de Azevedo Junior, W. F. & Leite, A. C. L. Halogen atoms in the modern medicinal chemistry: hints for the drug design. Curr. Drug Targets 11, 303–314 (2010).
Google Scholar
Bouzbouz, S. & Cahard, D. in Comprehensive Chirality (ed. Cossy, J.) Ch. 7.09 (Academic, 2024).
Shibatomi, K. Alternative synthetic strategies for enantioselective construction of halogenated chiral carbon centers. Synthesis 2010, 2679–2702 (2010).
Gómez-Martinez, M., Alonso, D. A., Pastor, I. M., Guillena, G. & Baeza, A. Organocatalyzed assembly of chlorinated quaternary stereogenic centers. Asian J. Org. Chem. 5, 1428–1437 (2016).
Liu, Y., Leng, H.-J., Li, Q.-Z. & Li, J.-L. Catalytic strategies for the asymmetric construction of cyclic frameworks with a halogenated tetrasubstituted stereocenter. Adv. Synth. Catal. 362, 3926–3947 (2020).
Google Scholar
Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).
Google Scholar
Smith, A. M. R. & Hii, K. K. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 111, 1637–1656 (2011).
Google Scholar
Shibatomi, K. & Narayama, A. Catalytic enantioselective α-chlorination of carbonyl compounds. Asian J. Org. Chem. 2, 812–823 (2013).
Google Scholar
Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally different alkyl groups. Nature 631, 556–562 (2024).
Google Scholar
D’Angeli, F. & Marchetti, P. 2-Bromoamides. Stereocontrolled substitution and application to the synthesis of compounds of biological interest. Industr. Chem. Libr. 7, 160–170 (1995).
Google Scholar
Wu, D., Fan, W., Wu, L., Chen, P. & Liu, G. Copper-catalyzed enantioselective radical chlorination of alkenes. ACS Catal. 12, 5284–5291 (2022).
Google Scholar
Li, Z. et al. Catalytic enantioselective nucleophilic α-chlorination of ketones with NaCl. J. Am. Chem. Soc. 146, 2779–2788 (2024).
Google Scholar
Zhu, Y. et al. Modern approaches for asymmetric construction of carbon−fluorine quaternary stereogenic centers: synthetic challenges and pharmaceutical needs. Chem. Rev. 118, 3887–3964 (2018).
Google Scholar
Tredwell, M. & Gouverneur, V. in Comprehensive Chirality (eds Carreira, E. M. & Yamamoto, H.) Ch. 1.5 (Academic, 2012).
Butcher, T. W. et al. Desymmetrization of difluoromethylene groups by C–F bond activation. Nature 583, 548–553 (2020).
Google Scholar
Zhanel, G. G. et al. Solithromycin: a novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs 76, 1737–1757 (2016).
Google Scholar
Minko, Y. & Marek, I. Stereodefined acyclic trisubstituted metal enolates towards the asymmetric formation of quaternary carbon stereocentres. Chem. Commun. 50, 12597–12611 (2014).
Google Scholar
Jia, Z. & Luo, S. in Comprehensive Chirality (ed. Cossy, J.) Ch. 7.07 (Academic, 2024).
Zhang, Y., Vanderghinste, J., Wang, J. & Das, S. Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids. Nat. Commun. 15, 1474 (2024).
Google Scholar
Friis, S. D., Pirnot, M. T., Dupuis, L. N. & Buchwald, S. L. A dual palladium and copper hydride catalyzed approach for alkyl–aryl cross‐coupling of aryl halides and olefins. Angew. Chem. Int. Edn 56, 7242–7246 (2017).
Google Scholar
Xi, Y. & Hartwig, J. F. Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes. J. Am. Chem. Soc. 139, 12758–12772 (2017).
Google Scholar
Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).
Google Scholar
Eaton, G. R., Eaton, S. S., Barr, D. P. & Weber, R. T. Quantitative EPR (Springer, 2010).
Schneebeli, S. T., Hall, M. L., Breslow, R. & Friesner, R. Quantitative DFT modeling of the enantiomeric excess for dioxirane-catalyzed epoxidations. J. Am. Chem. Soc. 131, 3965–3973 (2009).
Google Scholar
Fang, C. et al. Mechanistically guided predictive models for ligand and initiator effects in copper-catalyzed atom transfer radical polymerization (Cu-ATRP). J. Am. Chem. Soc. 141, 7486–7497 (2019).
Google Scholar
Chen, B., Fang, C., Liu, P. & Ready, J. M. Rhodium-catalyzed enantioselective radical addition of CX4 reagents to olefins. Angew. Chem. Int. Edn 56, 8780–8784 (2017).
Google Scholar