A giant planet transiting a 3-Myr protostar with a misaligned disk – Nature
Plavchan, P. et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature 582, 497–500 (2020).
Google Scholar
Bohn, A. J. et al. Probing inner and outer disk misalignments in transition disks. Constraints from VLTI/GRAVITY and ALMA observations. Astron. Astrophys. 658, A183 (2022).
Google Scholar
Espaillat, C. et al. The transitional disk around IRAS 04125+2902. Astrophys. J. 807, 156 (2015).
Google Scholar
Krolikowski, D. M. et al. Gaia EDR3 reveals the substructure and complicated star formation history of the greater Taurus–Auriga star-forming complex. Astron. J. 162, 110 (2021).
Google Scholar
Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).
Google Scholar
Kraus, A. L. et al. Three wide planetary-mass companions to FW Tau, ROXs 12, and ROXs 42B. Astrophys. J. 781, 20 (2014).
Google Scholar
Fontanive, C. et al. A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus. Astrophys. J. 905, L14 (2020).
Google Scholar
Johns-Krull, C. M. et al. A candidate young massive planet in orbit around the classical T Tauri star CI Tau. Astrophys. J. 826, 206 (2016).
Google Scholar
Donati, J. F. et al. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534, 662–666 (2016).
Google Scholar
Donati, J. F. et al. The magnetic field and accretion regime of CI Tau. Mon. Not. R. Astron. Soc. 491, 5660–5670 (2020).
Google Scholar
Damasso, M. et al. The GAPS programme at TNG. XXVII. Reassessment of a young plan- etary system with HARPS-N: is the hot Jupiter V830 Tau b really there? Astron. Astrophys. 642, A133 (2020).
Google Scholar
Fortney, J. J. et al. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).
Google Scholar
Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).
Google Scholar
Vach, S. et al. The occurrence of small, short-period planets younger than 200 Myr with TESS. Astron. J. 167, 210 (2024).
Google Scholar
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Google Scholar
Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).
Google Scholar
Mamajek, E. E. et al. Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astron. J. 143, 72 (2012).
Google Scholar
Espaillat, C. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 497–520 (Univ. Arizona Press, 2014).
Zhu, Z. et al. Transitional and pre- transitional disks: gap opening by multiple planets? Astrophys. J. 729, 47 (2011).
Google Scholar
Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).
Google Scholar
Ruíz-Rodríguez, D. et al. The frequency of binary star interlopers amongst transitional discs. Mon. Not. R. Astron. Soc. 463, 3829–3847 (2016).
Google Scholar
Newton, E. R. et al. TESS Hunt for Young and Maturing Exoplanets (THYME): a planet in the 45 Myr Tucana–Horologium association. Astrophys. J. 880, L17 (2019).
Google Scholar
Bate, M. R. et al. Observational implications of precessing protostellar discs and jets. Mon. Not. R. Astron. Soc. 317, 773–781 (2000).
Google Scholar
Christian, S. et al. A possible alignment between the orbits of planetary systems and their visual binary companions. Astron. J. 163, 207 (2022).
Google Scholar
Bate, M. R. et al. On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 475, 5618–5658 (2018).
Google Scholar
Kuffmeier, M., Dullemond, C. P., Reissl, S. & Goicovic, F. G. Misaligned disks induced by infall. Astron. Astrophys. 656, A161 (2021).
Google Scholar
Casassus, S. et al. An inner warp in the DoAr 44 T Tauri transition disc. Mon. Not. R. Astron. Soc. 477, 5104–5114 (2018).
Google Scholar
Kraus, S. et al. A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science 369, 1233–1238 (2020).
Google Scholar
Davies, C. L. Star-disc (mis-)alignment in Rho Oph and Upper Sco: insights from spatially resolved disc systems with K2 rotation period. Mon. Not. R. Astron. Soc. 484, 1926–1935 (2019).
Google Scholar
Benisty, M. et al. Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astron. Astrophys. 619, A171 (2018).
Google Scholar
Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 99133E (2016).
Twicken, J. D. et al. Photometric analysis in the Kepler Science Operations Center pipeline. Proc. SPIE 7740, 774023 (2010).
Vanderburg, A. et al. TESS spots a compact system of super-Earths around the naked-eye star HR 858. Astrophys. J. 881, L19 (2019).
Google Scholar
Stumpe, M. C. et al. Kepler presearch data conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985–999 (2012).
Google Scholar
Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).
Google Scholar
Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). V. A uniform search for transiting planets in young clusters observed by K2. Astron. J. 154, 224 (2017).
Google Scholar
Astropy Collaboration et al.The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).
Google Scholar
Hattori, S. et al. The unpopular package: a data-driven approach to detrending TESS full-frame image light curves. Astron. J. 163, 284 (2022).
Uyama, T. et al. The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. Astron. J. 153, 106 (2017).
Google Scholar
Wallace, A. L. et al. High-resolution survey for planetary companions to young stars in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 498, 1382–1396 (2020).
Google Scholar
Kraus, A. L. et al. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).
Google Scholar
Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 125, 1031 (2013).
Google Scholar
McCully, C. et al. Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI. Proc. SPIE 10707, 107070K (2018).
Collins, K. A. et al. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).
Google Scholar
Park, C. et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). Proc. SPIE 9147, 91471D (2014).
López-Valdivia, R. et al. The IGRINS YSO survey. I. Stellar parameters of pre-main-sequence stars in Taurus–Auriga. Astrophys. J. 921, 53 (2021).
Google Scholar
Lee, J.-J., Gullikson, K. & Kaplan, K. igrins/plp 2.2.0. Zenodo https://doi.org/10.5281/zenodo.11080095 (2017).
Stahl, A. G. et al. IGRINS RV: a precision radial velocity pipeline for IGRINS using modified forward modeling in the near-infrared. Astron. J. 161, 283 (2021).
Google Scholar
Abdurro’uf. et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).
Google Scholar
Mahadevan, S. et al. The Habitable Zone Planet Finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass exoplanets around M dwarfs. Proc. SPIE 7735, 77356X (2010).
Mahadevan, S. et al. The Habitable-zone Planet Finder: a status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope. Proc. SPIE 9147, 91471G (2014).
Kanodia, S. et al. Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder. Proc. SPIE 10702, 107026Q (2018).
Stefansson, G. et al. A versatile technique to enable sub-milli-kelvin instrument stability for precise radial velocity measurements: tests with the Habitable-zone Planet Finder. Astrophys. J. 833, 175 (2016).
Google Scholar
Metcalf, A. J. et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica 6, 233 (2019).
Google Scholar
Ninan, J. P. et al. The Habitable-zone Planet Finder: improved flux image generation algorithms for H2RG up-the-ramp dat. Proc. SPIE 10709, 107092U (2018).
Kaplan, K. F. et al. The algorithms behind the HPF and NEID pipeline. In Astronomical Data Analysis Software and Systems XXVII: Astronomical Society of the Pacific Conference Series Vol. 523 (eds Teuben, P. J. et al.) 567–570 (Univ. Maryland, 2019).
Wright, J. T. & Eastman, J. D. Barycentric corrections at 1 cm s−1 for precise Doppler velocities. Publ. Astron. Soc. Pac. 126, 838–852 (2014).
Google Scholar
Rucinski, S. M. et al. Radial velocity studies of close binary stars. VII. Methods and uncertainties. Publ. Astron. Soc. Pac. 124, 1746–1756 (2002).
Tofflemire, B. M., Mathieu, R. D. & Johns-Krull, C. M. Accretion kinematics in the T Tauri binary TWA 3A: evidence for preferential accretion onto the TWA 3A primary. Astron. J. 158, 245 (2019).
Google Scholar
Tofflemire, B. M. offlemire/saphires: Zenodo archive (2019).
Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).
Google Scholar
Spina, L. et al. The Gaia–ESO aurvey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 601, A70 (2017).
Google Scholar
D’Orazi, V., Biazzo, K. & Randich, S. Chemical composition of the Taurus–Auriga association. Astron. Astrophys. 526, A103 (2011).
Google Scholar
Herczeg, G. J. & Hillenbrand, L. A. An optical spectroscopic study of T Tauri stars. I. Photospheric properties. Astrophys. J. 786, 97 (2014).
Google Scholar
Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the Upper Scorpius OB association. Astron. J. 152, 61 (2016).
Google Scholar
Mann, A. W. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr giant planet transiting a very-low-mass star in lower Centaurus Crux. Astron. J. 163, 156 (2022).
Google Scholar
Rayner, J. T., Cushing, M. C. & Vacca, W. D. The Infrared Telescope Facility (IRTF) spectral library: cool stars. Astrophys. J. Suppl. Ser. 185, 289–432 (2009).
Google Scholar
Mann, A. W. et al. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).
Google Scholar
Gaidos, E. et al. Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life. Mon. Not. R. Astron. Soc. 443, 2561–2578 (2014).
Google Scholar
Lantz, B. et al. SNIFS: a wideband integral field spectrograph with microlens arrays. Proc. SPIE 5249, 146–155 (2004).
Allard, F. et al. Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Mem. Soc. Astron. Ital. Suppl. 24, 128 (2013).
Google Scholar
Gully-Santiago, M. A. et al. Placing the spotted T Tauri star LkCa 4 on an HR diagram. Astrophys. J. 836, 200 (2017).
Google Scholar
Thao, P. C. et al. Hazy with a chance of star spots: constraining the atmosphere of young planet K2-33b. Astron. J. 577, A42 (2015).
Google Scholar
Koen, C. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Mon. Not. R. Astron. Soc. 463, 4383–4395 (2016).
Google Scholar
Frasca, A. et al. REM near-IR and optical photometric monitoring of pre-main sequence stars in Orion. Rotation periods and starspot parameters. Astron. Astrophys. 508, 1313–1330 (2009).
Google Scholar
Thao, P. C. et al. Zodiacal Exoplanets in Time (ZEIT). IX. A flat transmission spectrum and a highly eccentric orbit for the young Neptune K2-25b as revealed by Spitzer. Astron. J. 159, 2 (2020).
Google Scholar
Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).
Google Scholar
Hartmann, L., Herczeg, G. & Calvet, N. Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016).
Google Scholar
Alcalá, J. M. et al. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects. Astron. Astrophys. 600, A20 (2017).
Google Scholar
Luhman, K. L. The stellar population of the Chamaeleon I star-forming region. Astrophys. J. Suppl. Ser. 173, 104–136 (2007).
Google Scholar
Kesseli, A. Y., Muirhead, P. S., Mann, A. W. & Mace, G. et al. Magnetic inflation and stellar mass. II. On the radii of single, rapidly rotating, fully convective M-dwarf stars. Astron. J. 155, 225 (2018).
Google Scholar
Lavail, A., Kochukhov, O. & Hussain, G. A. J. Characterising the surface magnetic fields of T Tauri stars with high-resolution near-infrared spectroscopy. Astron. Astrophys. 630, A99 (2019).
Google Scholar
Masuda, K. & Winn, J. N. On the inference of a star’s inclination angle from its rotation velocity and projected rotation velocity. Astron. J. 159, 81 (2020).
Google Scholar
Tofflemire, B. M. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). V. A sub-Neptune transiting a young star in a newly discovered 250 Myr association. Astron. J. 161, 171 (2021).
Google Scholar
Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).
Google Scholar
Lubow, S. H. & Ogilvie, G. I. On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000).
Google Scholar
Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).
Google Scholar
Blunt, S. et al. Orbits for the impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).
Google Scholar
Ferrer-Chávez, R., Wang, J. J. & Blunt, S. Biases in orbital fitting of directly imaged exoplanets with small orbital coverage. Astron. J. 161, 241 (2021).
Google Scholar
Hildebrand, R. H. The determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).
Google Scholar
Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).
Google Scholar
Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924 (1990).
Google Scholar
Testi, L. et al. The protoplanetary disk population in the ρ-Ophiuchi region L1688 and the time evolution of class II YSOs. Astron. Astrophys. 663, A98 (2022).
Google Scholar
Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. Astrophys. J. 818, 46 (2016).
Google Scholar
Johnson, M. C. et al. K2-260 b: a hot Jupiter transiting an F star, and K2-261 b: a warm Saturn around a bright G star. Mon. Not. R. Astron. Soc. 481, 596–612 (2018).
Google Scholar
Kreidberg, L. BATMAN: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161–1165 (2015).
Google Scholar
Foreman-Mackey, D. et al. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).
Google Scholar
Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).
Google Scholar
Wittrock, J. M. et al. Transit timing variations for AU Microscopii b & c. Astron. J. 164, 27 (2022).
Van Eylen, V. & Albrecht, S. Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. Astrophys. J. 808, 126 (2015).
Google Scholar
Parviainen, H. & Aigrain, S. LDTK: Limb Darkening Toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).
Google Scholar
Rogers, J. G., Janó Muñoz, C., Owen, J. E. & Makinen, T. L. Exoplanet atmosphere evolution: emulation with neural networks. Mon. Not. R. Astron. Soc. 519, 6028–6043 (2023).
Google Scholar
Marley, M. S. et al. The Sonora brown dwarf atmosphere and evolution models. I. Model description and application to cloudless atmospheres in rainout chemical equilibrium. Astrophys. J. 920, 85 (2021).
Google Scholar
Wood, M. L., Mann, A. W. & Kraus, A. L. Characterizing undetected stellar companions with combined datasets. Astron. J. 162, 128 (2021).
Google Scholar
Ansdell, M. et al. Young “dipper” stars in Upper Sco and Oph observed by K2. Astrophys. J. 816, 69 (2016).
Google Scholar
Van Eyken, J. C. et al. The PTF Orion Project: a possible planet transiting a T-Tauri star. Astrophys. J. 755, 42 (2012).
Google Scholar
Bouma, L. G. et al. PTFO 8-8695: two stars, two signals, no planet. Astron. J. 160, 86 (2020).
Stauffer, J. et al. Orbiting clouds of material at the Keplerian co-rotation radius of rapidly rotating low-mass WTTs in Upper Sco. Astron. J. 153, 152 (2017).
Google Scholar
Koen, C. Multicolour time series photometry of the T Tauri star CVSO 30. Mon. Not. R. Astron. Soc. 450, 3991–3998 (2015).
Google Scholar
Ciardi, D. R. et al. Follow-up observations of PTFO 8-8695: a 3 Myr old T-Tauri star hosting a Jupiter-mass planetary candidate. Astrophys. J. 809, 42 (2015).
Google Scholar
Yu, L. et al. Tests of the planetary hypothesis for PTFO 8-8695b. Astrophys. J. 812, 48 (2015).
Google Scholar
Dattilo, A., Batalha, N. M. & Bryson, S. A. A unified treatment of kepler occurrence to trace planet evolution. I. Methodology. Astron. J. 166, 122 (2023).
Google Scholar
ExoFOP. Exoplanet follow-up observing program – kepler (2019).