A giant planet transiting a 3-Myr protostar with a misaligned disk – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Plavchan, P. et al. A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature 582, 497–500 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bohn, A. J. et al. Probing inner and outer disk misalignments in transition disks. Constraints from VLTI/GRAVITY and ALMA observations. Astron. Astrophys. 658, A183 (2022).

    Article 
    CAS 

    Google Scholar 

  • Espaillat, C. et al. The transitional disk around IRAS 04125+2902. Astrophys. J. 807, 156 (2015).

    Article 
    ADS 

    Google Scholar 

  • Krolikowski, D. M. et al. Gaia EDR3 reveals the substructure and complicated star formation history of the greater Taurus–Auriga star-forming complex. Astron. J. 162, 110 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bressan, A. et al. PARSEC: stellar tracks and isochrones with the Padova and Trieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kraus, A. L. et al. Three wide planetary-mass companions to FW Tau, ROXs 12, and ROXs 42B. Astrophys. J. 781, 20 (2014).

    Article 
    ADS 

    Google Scholar 

  • Fontanive, C. et al. A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus. Astrophys. J. 905, L14 (2020).

    Article 
    ADS 

    Google Scholar 

  • Johns-Krull, C. M. et al. A candidate young massive planet in orbit around the classical T Tauri star CI Tau. Astrophys. J. 826, 206 (2016).

    Article 
    ADS 

    Google Scholar 

  • Donati, J. F. et al. A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534, 662–666 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Donati, J. F. et al. The magnetic field and accretion regime of CI Tau. Mon. Not. R. Astron. Soc. 491, 5660–5670 (2020).

    Article 
    ADS 

    Google Scholar 

  • Damasso, M. et al. The GAPS programme at TNG. XXVII. Reassessment of a young plan- etary system with HARPS-N: is the hot Jupiter V830 Tau b really there? Astron. Astrophys. 642, A133 (2020).

    Article 

    Google Scholar 

  • Fortney, J. J. et al. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

    Article 
    ADS 

    Google Scholar 

  • Vach, S. et al. The occurrence of small, short-period planets younger than 200 Myr with TESS. Astron. J. 167, 210 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article 
    ADS 

    Google Scholar 

  • Johansen, A. & Lambrechts, M. Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mamajek, E. E. et al. Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young Sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. Astron. J. 143, 72 (2012).

    Article 
    ADS 

    Google Scholar 

  • Espaillat, C. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 497–520 (Univ. Arizona Press, 2014).

  • Zhu, Z. et al. Transitional and pre- transitional disks: gap opening by multiple planets? Astrophys. J. 729, 47 (2011).

    Article 
    ADS 

    Google Scholar 

  • Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. 3, 749–754 (2019).

    Article 
    ADS 

    Google Scholar 

  • Ruíz-Rodríguez, D. et al. The frequency of binary star interlopers amongst transitional discs. Mon. Not. R. Astron. Soc. 463, 3829–3847 (2016).

    Article 
    ADS 

    Google Scholar 

  • Newton, E. R. et al. TESS Hunt for Young and Maturing Exoplanets (THYME): a planet in the 45 Myr Tucana–Horologium association. Astrophys. J. 880, L17 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bate, M. R. et al. Observational implications of precessing protostellar discs and jets. Mon. Not. R. Astron. Soc. 317, 773–781 (2000).

    Article 
    ADS 

    Google Scholar 

  • Christian, S. et al. A possible alignment between the orbits of planetary systems and their visual binary companions. Astron. J. 163, 207 (2022).

    Article 
    ADS 

    Google Scholar 

  • Bate, M. R. et al. On the diversity and statistical properties of protostellar discs. Mon. Not. R. Astron. Soc. 475, 5618–5658 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuffmeier, M., Dullemond, C. P., Reissl, S. & Goicovic, F. G. Misaligned disks induced by infall. Astron. Astrophys. 656, A161 (2021).

    Article 
    ADS 

    Google Scholar 

  • Casassus, S. et al. An inner warp in the DoAr 44 T Tauri transition disc. Mon. Not. R. Astron. Soc. 477, 5104–5114 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kraus, S. et al. A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing. Science 369, 1233–1238 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, C. L. Star-disc (mis-)alignment in Rho Oph and Upper Sco: insights from spatially resolved disc systems with K2 rotation period. Mon. Not. R. Astron. Soc. 484, 1926–1935 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Benisty, M. et al. Shadows and asymmetries in the T Tauri disk HD 143006: evidence for a misaligned inner disk. Astron. Astrophys. 619, A171 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jenkins, J. M. et al. The TESS science processing operations center. Proc. SPIE 9913, 99133E (2016).

  • Twicken, J. D. et al. Photometric analysis in the Kepler Science Operations Center pipeline. Proc. SPIE 7740, 774023 (2010).

  • Vanderburg, A. et al. TESS spots a compact system of super-Earths around the naked-eye star HR 858. Astrophys. J. 881, L19 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stumpe, M. C. et al. Kepler presearch data conditioning I—architecture and algorithms for error correction in Kepler light curves. Publ. Astron. Soc. Pac. 124, 985–999 (2012).

    Article 
    ADS 

    Google Scholar 

  • Smith, J. C. et al. Kepler presearch data conditioning II—a Bayesian approach to systematic error correction. Publ. Astron. Soc. Pac. 124, 1000 (2012).

    Article 
    ADS 

    Google Scholar 

  • Rizzuto, A. C. et al. Zodiacal Exoplanets in Time (ZEIT). V. A uniform search for transiting planets in young clusters observed by K2. Astron. J. 154, 224 (2017).

    Article 
    ADS 

    Google Scholar 

  • Astropy Collaboration et al.The Astropy Project: building an open-science project and status of the v2.0 core package. Astron. J. 156, 123 (2018).

    Article 
    ADS 

    Google Scholar 

  • Hattori, S. et al. The unpopular package: a data-driven approach to detrending TESS full-frame image light curves. Astron. J. 163, 284 (2022).

  • Uyama, T. et al. The SEEDS high-contrast imaging survey of exoplanets around young stellar objects. Astron. J. 153, 106 (2017).

    Article 
    ADS 

    Google Scholar 

  • Wallace, A. L. et al. High-resolution survey for planetary companions to young stars in the Taurus molecular cloud. Mon. Not. R. Astron. Soc. 498, 1382–1396 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kraus, A. L. et al. The impact of stellar multiplicity on planetary systems. I. The ruinous influence of close binary companions. Astron. J. 152, 8 (2016).

    Article 
    ADS 

    Google Scholar 

  • Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 125, 1031 (2013).

    Article 
    ADS 

    Google Scholar 

  • McCully, C. et al. Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI. Proc. SPIE 10707, 107070K (2018).

  • Collins, K. A. et al. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    Article 
    ADS 

    Google Scholar 

  • Park, C. et al. Design and early performance of IGRINS (Immersion Grating Infrared Spectrometer). Proc. SPIE 9147, 91471D (2014).

  • López-Valdivia, R. et al. The IGRINS YSO survey. I. Stellar parameters of pre-main-sequence stars in Taurus–Auriga. Astrophys. J. 921, 53 (2021).

    Article 
    ADS 

    Google Scholar 

  • Lee, J.-J., Gullikson, K. & Kaplan, K. igrins/plp 2.2.0. Zenodo https://doi.org/10.5281/zenodo.11080095 (2017).

  • Stahl, A. G. et al. IGRINS RV: a precision radial velocity pipeline for IGRINS using modified forward modeling in the near-infrared. Astron. J. 161, 283 (2021).

    Article 
    ADS 

    Google Scholar 

  • Abdurro’uf. et al. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Astrophys. J. Suppl. Ser. 259, 35 (2022).

    Article 
    ADS 

    Google Scholar 

  • Mahadevan, S. et al. The Habitable Zone Planet Finder: a proposed high-resolution NIR spectrograph for the Hobby Eberly Telescope to discover low-mass exoplanets around M dwarfs. Proc. SPIE 7735, 77356X (2010).

  • Mahadevan, S. et al. The Habitable-zone Planet Finder: a status update on the development of a stabilized fiber-fed near-infrared spectrograph for the for the Hobby-Eberly telescope. Proc. SPIE 9147, 91471G (2014).

  • Kanodia, S. et al. Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder. Proc. SPIE 10702, 107026Q (2018).

  • Stefansson, G. et al. A versatile technique to enable sub-milli-kelvin instrument stability for precise radial velocity measurements: tests with the Habitable-zone Planet Finder. Astrophys. J. 833, 175 (2016).

    Article 
    ADS 

    Google Scholar 

  • Metcalf, A. J. et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica 6, 233 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ninan, J. P. et al. The Habitable-zone Planet Finder: improved flux image generation algorithms for H2RG up-the-ramp dat. Proc. SPIE 10709, 107092U (2018).

  • Kaplan, K. F. et al. The algorithms behind the HPF and NEID pipeline. In Astronomical Data Analysis Software and Systems XXVII: Astronomical Society of the Pacific Conference Series Vol. 523 (eds Teuben, P. J. et al.) 567–570 (Univ. Maryland, 2019).

  • Wright, J. T. & Eastman, J. D. Barycentric corrections at 1 cm s−1 for precise Doppler velocities. Publ. Astron. Soc. Pac. 126, 838–852 (2014).

    Article 
    ADS 

    Google Scholar 

  • Rucinski, S. M. et al. Radial velocity studies of close binary stars. VII. Methods and uncertainties. Publ. Astron. Soc. Pac. 124, 1746–1756 (2002).

    Google Scholar 

  • Tofflemire, B. M., Mathieu, R. D. & Johns-Krull, C. M. Accretion kinematics in the T Tauri binary TWA 3A: evidence for preferential accretion onto the TWA 3A primary. Astron. J. 158, 245 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tofflemire, B. M. offlemire/saphires: Zenodo archive (2019).

  • Husser, T.-O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

    Article 

    Google Scholar 

  • Spina, L. et al. The Gaia–ESO aurvey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 601, A70 (2017).

    Article 

    Google Scholar 

  • D’Orazi, V., Biazzo, K. & Randich, S. Chemical composition of the Taurus–Auriga association. Astron. Astrophys. 526, A103 (2011).

    Article 
    ADS 

    Google Scholar 

  • Herczeg, G. J. & Hillenbrand, L. A. An optical spectroscopic study of T Tauri stars. I. Photospheric properties. Astrophys. J. 786, 97 (2014).

    Article 
    ADS 

    Google Scholar 

  • Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). III. A short-period planet orbiting a pre-main-sequence star in the Upper Scorpius OB association. Astron. J. 152, 61 (2016).

    Article 
    ADS 

    Google Scholar 

  • Mann, A. W. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). VI. An 11 Myr giant planet transiting a very-low-mass star in lower Centaurus Crux. Astron. J. 163, 156 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rayner, J. T., Cushing, M. C. & Vacca, W. D. The Infrared Telescope Facility (IRTF) spectral library: cool stars. Astrophys. J. Suppl. Ser. 185, 289–432 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Mann, A. W. et al. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    Article 
    ADS 

    Google Scholar 

  • Gaidos, E. et al. Trumpeting M dwarfs with CONCH-SHELL: a catalogue of nearby cool host-stars for habitable exoplanets and life. Mon. Not. R. Astron. Soc. 443, 2561–2578 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lantz, B. et al. SNIFS: a wideband integral field spectrograph with microlens arrays. Proc. SPIE 5249, 146–155 (2004).

  • Allard, F. et al. Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Mem. Soc. Astron. Ital. Suppl. 24, 128 (2013).

    ADS 

    Google Scholar 

  • Gully-Santiago, M. A. et al. Placing the spotted T Tauri star LkCa 4 on an HR diagram. Astrophys. J. 836, 200 (2017).

    Article 
    ADS 

    Google Scholar 

  • Thao, P. C. et al. Hazy with a chance of star spots: constraining the atmosphere of young planet K2-33b. Astron. J. 577, A42 (2015).

    ADS 

    Google Scholar 

  • Koen, C. The seventeenth data release of the Sloan Digital Sky Surveys: complete release of MaNGA, MaStar, and APOGEE-2 data. Mon. Not. R. Astron. Soc. 463, 4383–4395 (2016).

    Article 
    ADS 

    Google Scholar 

  • Frasca, A. et al. REM near-IR and optical photometric monitoring of pre-main sequence stars in Orion. Rotation periods and starspot parameters. Astron. Astrophys. 508, 1313–1330 (2009).

    Article 
    ADS 

    Google Scholar 

  • Thao, P. C. et al. Zodiacal Exoplanets in Time (ZEIT). IX. A flat transmission spectrum and a highly eccentric orbit for the young Neptune K2-25b as revealed by Spitzer. Astron. J. 159, 2 (2020).

    Article 

    Google Scholar 

  • Baraffe, I., Homeier, D., Allard, F. & Chabrier, G. New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit. Astron. Astrophys. 577, A42 (2015).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article 
    ADS 

    Google Scholar 

  • Hartmann, L., Herczeg, G. & Calvet, N. Accretion onto pre-main-sequence stars. Annu. Rev. Astron. Astrophys. 54, 135–180 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Alcalá, J. M. et al. X-shooter spectroscopy of young stellar objects in Lupus. Accretion properties of class II and transitional objects. Astron. Astrophys. 600, A20 (2017).

    Article 

    Google Scholar 

  • Luhman, K. L. The stellar population of the Chamaeleon I star-forming region. Astrophys. J. Suppl. Ser. 173, 104–136 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kesseli, A. Y., Muirhead, P. S., Mann, A. W. & Mace, G. et al. Magnetic inflation and stellar mass. II. On the radii of single, rapidly rotating, fully convective M-dwarf stars. Astron. J. 155, 225 (2018).

    Article 
    ADS 

    Google Scholar 

  • Lavail, A., Kochukhov, O. & Hussain, G. A. J. Characterising the surface magnetic fields of T Tauri stars with high-resolution near-infrared spectroscopy. Astron. Astrophys. 630, A99 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Masuda, K. & Winn, J. N. On the inference of a star’s inclination angle from its rotation velocity and projected rotation velocity. Astron. J. 159, 81 (2020).

    Article 
    ADS 

    Google Scholar 

  • Tofflemire, B. M. et al. TESS Hunt for Young and Maturing Exoplanets (THYME). V. A sub-Neptune transiting a young star in a newly discovered 250 Myr association. Astron. J. 161, 171 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. 190, 1–42 (2010).

    Article 
    CAS 

    Google Scholar 

  • Lubow, S. H. & Ogilvie, G. I. On the tilting of protostellar disks by resonant tidal effects. Astrophys. J. 538, 326–340 (2000).

    Article 
    ADS 

    Google Scholar 

  • Pearce, L. A. et al. Orbital parameter determination for wide stellar binary systems in the age of Gaia. Astrophys. J. 894, 115 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Blunt, S. et al. Orbits for the impatient: a Bayesian rejection-sampling method for quickly fitting the orbits of long-period exoplanets. Astron. J. 153, 229 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ferrer-Chávez, R., Wang, J. J. & Blunt, S. Biases in orbital fitting of directly imaged exoplanets with small orbital coverage. Astron. J. 161, 241 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hildebrand, R. H. The determination of cloud masses and dust characteristics from submillimetre thermal emission. Q. J. R. Astron. Soc. 24, 267–282 (1983).

    ADS 

    Google Scholar 

  • Ansdell, M. et al. ALMA survey of Lupus protoplanetary disks. I. Dust and gas masses. Astrophys. J. 828, 46 (2016).

    Article 
    ADS 

    Google Scholar 

  • Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astron. J. 99, 924 (1990).

    Article 
    ADS 

    Google Scholar 

  • Testi, L. et al. The protoplanetary disk population in the ρ-Ophiuchi region L1688 and the time evolution of class II YSOs. Astron. Astrophys. 663, A98 (2022).

    Article 

    Google Scholar 

  • Mann, A. W. et al. Zodiacal Exoplanets in Time (ZEIT). I. A Neptune-sized planet orbiting an M4.5 dwarf in the Hyades star cluster. Astrophys. J. 818, 46 (2016).

    Article 
    ADS 

    Google Scholar 

  • Johnson, M. C. et al. K2-260 b: a hot Jupiter transiting an F star, and K2-261 b: a warm Saturn around a bright G star. Mon. Not. R. Astron. Soc. 481, 596–612 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kreidberg, L. BATMAN: basic transit model calculation in Python. Publ. Astron. Soc. Pac. 127, 1161–1165 (2015).

    Article 
    ADS 

    Google Scholar 

  • Foreman-Mackey, D. et al. Fast and scalable Gaussian process modeling with applications to astronomical time series. Astron. J. 154, 220 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kipping, D. M. Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Mon. Not. R. Astron. Soc. 435, 2152–2160 (2013).

    Article 
    ADS 

    Google Scholar 

  • Wittrock, J. M. et al. Transit timing variations for AU Microscopii b & c. Astron. J. 164, 27 (2022).

  • Van Eylen, V. & Albrecht, S. Eccentricity from transit photometry: small planets in Kepler multi-planet systems have low eccentricities. Astrophys. J. 808, 126 (2015).

    Article 
    ADS 

    Google Scholar 

  • Parviainen, H. & Aigrain, S. LDTK: Limb Darkening Toolkit. Mon. Not. R. Astron. Soc. 453, 3821–3826 (2015).

    Article 
    ADS 

    Google Scholar 

  • Rogers, J. G., Janó Muñoz, C., Owen, J. E. & Makinen, T. L. Exoplanet atmosphere evolution: emulation with neural networks. Mon. Not. R. Astron. Soc. 519, 6028–6043 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Marley, M. S. et al. The Sonora brown dwarf atmosphere and evolution models. I. Model description and application to cloudless atmospheres in rainout chemical equilibrium. Astrophys. J. 920, 85 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wood, M. L., Mann, A. W. & Kraus, A. L. Characterizing undetected stellar companions with combined datasets. Astron. J. 162, 128 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ansdell, M. et al. Young “dipper” stars in Upper Sco and Oph observed by K2. Astrophys. J. 816, 69 (2016).

    Article 
    ADS 

    Google Scholar 

  • Van Eyken, J. C. et al. The PTF Orion Project: a possible planet transiting a T-Tauri star. Astrophys. J. 755, 42 (2012).

    Article 
    ADS 

    Google Scholar 

  • Bouma, L. G. et al. PTFO 8-8695: two stars, two signals, no planet. Astron. J. 160, 86 (2020).

  • Stauffer, J. et al. Orbiting clouds of material at the Keplerian co-rotation radius of rapidly rotating low-mass WTTs in Upper Sco. Astron. J. 153, 152 (2017).

    Article 
    ADS 

    Google Scholar 

  • Koen, C. Multicolour time series photometry of the T Tauri star CVSO 30. Mon. Not. R. Astron. Soc. 450, 3991–3998 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ciardi, D. R. et al. Follow-up observations of PTFO 8-8695: a 3 Myr old T-Tauri star hosting a Jupiter-mass planetary candidate. Astrophys. J. 809, 42 (2015).

    Article 
    ADS 

    Google Scholar 

  • Yu, L. et al. Tests of the planetary hypothesis for PTFO 8-8695b. Astrophys. J. 812, 48 (2015).

    Article 
    ADS 

    Google Scholar 

  • Dattilo, A., Batalha, N. M. & Bryson, S. A. A unified treatment of kepler occurrence to trace planet evolution. I. Methodology. Astron. J. 166, 122 (2023).

    Article 
    ADS 

    Google Scholar 

  • ExoFOP. Exoplanet follow-up observing program – kepler (2019).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Falling enrolments and funding cuts force Australian universities to take stock
    Falling enrolments and funding cuts force Australian universities to take stock
    My paper was proved wrong. After a sleepless night, here’s what I did next
    My paper was proved wrong. After a sleepless night, here’s what I did next
    RANK drives structured intestinal epithelial expansion during pregnancy - Nature
    RANK drives structured intestinal epithelial expansion during pregnancy – Nature
    NK2R control of energy expenditure and feeding to treat metabolic diseases - Nature
    NK2R control of energy expenditure and feeding to treat metabolic diseases – Nature
    How students and grandparents could solve the global mental-health crisis
    How students and grandparents could solve the global mental-health crisis
    Daily briefing: How to mentally recover from an extreme weather event
    Daily briefing: How to mentally recover from an extreme weather event
    Headline Central | © 2024 | News