Common occurrences of subsurface heatwaves and cold spells in ocean eddies – Nature
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
Google Scholar
Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
Xu, T. et al. An increase in marine heatwaves without significant changes in surface ocean temperature variability. Nat. Commun. 13, 7396 (2022).
Google Scholar
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
Google Scholar
Welch, H. et al. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat. Commun. 14, 5188 (2023).
Google Scholar
Jacox, M. G. et al. Global seasonal forecasts of marine heatwaves. Nature 604, 486–490 (2022).
Google Scholar
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Google Scholar
Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).
Google Scholar
Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).
Google Scholar
Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Prog. Oceanogr. 198, 102684 (2021).
Google Scholar
Guo, X. et al. Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat. Clim. Change 12, 179–186 (2022).
Google Scholar
Hobday, A. J. et al. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 621, 38–41 (2023).
Google Scholar
Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).
Google Scholar
Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Global Biogeochem. Cycles 35, e2020GB006759 (2021).
Google Scholar
Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).
Google Scholar
Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).
Google Scholar
Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).
Sun, D., Li, F., Jing, Z., Hu, S. & Zhang, B. Frequent marine heatwaves hidden below the surface of the global ocean. Nat. Geosci. 16, 1099–1104 (2023).
Google Scholar
Gruber, N., Boyd, P. W., Frolicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).
Google Scholar
Bian, C., Jing, Z., Wang, H. & Wu, L. Scale‐dependent drivers of marine heatwaves globally. Geophys. Res. Lett. 51, e2023GL107306 (2024).
Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).
Google Scholar
Ren, X., Liu, W., Capotondi, A., Amaya, D. J. & Holbrook, N. J. The Pacific Decadal Oscillation modulated marine heatwaves in the northeast Pacific during past decades. Commun. Earth Environ. 4, 218 (2023).
Schaeffer, A., Sen Gupta, A. & Roughan, M. Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in eastern Australian coastal waters. Commun. Earth Environ. 4, 304 (2023).
Chelton, D. B., Schlax, M. G. & Samelson, R. M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216 (2011).
Google Scholar
Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).
Beech, N. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Change 12, 910–917 (2022).
Google Scholar
Wang, H., Qiu, B., Liu, H. & Zhang, Z. Doubling of surface oceanic meridional heat transport by non-symmetry of mesoscale eddies. Nat. Commun. 14, 5460 (2023).
Google Scholar
He, Q., Zhan, H. & Cai, S. Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. J. Geophys. Res. Oceans 125, e2020JC016524 (2020).
Google Scholar
Villas Bôas, A. B., Sato, O. T., Chaigneau, A. & Castelão, G. P. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett. 42, 1856–1862 (2015).
Google Scholar
McGillicuddy, D. et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).
Google Scholar
Zhang, Z. et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep. 6, 24349 (2016).
Google Scholar
He, Q. et al. Enhancing impacts of mesoscale eddies on Southern Ocean temperature variability and extremes. Proc. Natl Acad. Sci. USA 120, e2302292120 (2023).
Google Scholar
Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).
Google Scholar
Bian, C. et al. Oceanic mesoscale eddies as crucial drivers of global marine heatwaves. Nat. Commun. 14, 2970 (2023).
Google Scholar
Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Nat. Clim. Change 13, 1114–1121 (2023).
Google Scholar
Nakano, H., Tsujino, H. & Sakamoto, K. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model. J. Geophys. Res. Oceans 118, 5461–5488 (2013).
Google Scholar
Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).
Google Scholar
Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).
Google Scholar
Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10, 757–761 (2020).
Google Scholar
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).
Google Scholar
Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).
Google Scholar
He, Q. et al. Thermal imprints of mesoscale eddies in the global ocean. J. Phys. Oceanogr. 54, 1991–2009 (2024).
Google Scholar
Zhang, Z., Wang, W. & Qiu, B. Oceanic mass transport by mesoscale eddies. Science 345, 322–324 (2014).
Google Scholar
Zhang, Y., Du, Y., Feng, M. & Hobday, A. J. Vertical structures of marine heatwaves. Nat. Commun. 14, 6483 (2023).
Google Scholar
Elzahaby, Y. & Schaeffer, A. Observational insight into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).
Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807–5835 (2022).
Google Scholar
Burger, F. A., Terhaar, J. & Frolicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).
Google Scholar
Benitez-Nelson, C. R. et al. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017–1021 (2007).
Google Scholar
Atkins, J., Andrews, O. & Frenger, I. Quantifying the contribution of ocean mesoscale eddies to low oxygen extreme events. Geophys. Res. Lett. 49, e2022GL098672 (2022).
Boyer, T. P. et al. NCEI standard product: World Ocean Database (WOD) (NOAA National Centers for Environmental Information dataset, accessed 21 October 2021); www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOD
Pegliasco, C. et al. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth Syst. Sci. Data 14, 1087–1107 (2022).
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Google Scholar
Gupta, H., Sil, S., Gangopadhyay, A. & Gawarkiewicz, G. Observed surface and subsurface marine heat waves in the Bay of Bengal from in-situ and high-resolution satellite data. Clim. Dyn. 62, 203–221 (2023).
Google Scholar
Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).
Google Scholar
He, Q. et al. A new assessment of mesoscale eddies in the South China Sea: surface features, three-dimensional structures and thermohaline transports. J. Geophys. Res. Oceans 123, 4906–4929 (2018).
Google Scholar
Zhao, Z. & Marin, M. A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 4, 1124 (2019).
Google Scholar
He, Q. Codes and source data for “Common occurrences of subsurface heatwaves and cold-spells in ocean eddies”. Zenodo https://doi.org/10.5281/zenodo.13235274 (2024).