Dual neuromodulatory dynamics underlie birdsong learning – Nature

You May Be Interested In:The Download: HIV prevention shots, and fixing a broken sex doll


  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-019-0220-7 (2019).

  • Wood, A. N. New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. J. Neurophysiol. 125, 2361–2374 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Blain, B. & Sharot, T. Intrinsic reward: potential cognitive and neural mechanisms. Curr. Opin. Behav. Sci. 39, 113–118 (2021).

    Article 
    MATH 

    Google Scholar 

  • Hisey, E., Kearney, M. G. & Mooney, R. A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nat. Neurosci. 21, 589–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thorndike, E. L. The Elements of Psychology (Seiler, 1905).

  • Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614, 108–117 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sakata, J. T., Woolley, S. C., Fay, R. R. & Popper, A. N. The Neuroethology of Birdsong (Springer Nature, 2020).

  • Mooney, R. Birdsong. Curr. Biol. 32, R1090–R1094 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C. & Tchernichovski, O. How sleep affects the developmental learning of bird song. Nature 433, 710–716 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Goffinet, J., Brudner, S., Mooney, R. & Pearson, J. Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. eLife 10, e67855 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brudner, S., Pearson, J. & Mooney, R. Generative models of birdsong learning link circadian fluctuations in song variability to changes in performance. PLoS Comput. Biol. 19, e1011051 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eales, L. A. Song learning in zebra finches: some effects of song model availability on what is learnt and when. Anim. Behav. 33, 1293–1300 (1985).

    Article 
    MATH 

    Google Scholar 

  • Price, P. H. Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93, 260–277 (1979).

    Article 
    MATH 

    Google Scholar 

  • Singh Alvarado, J. et al. Neural dynamics underlying birdsong practice and performance. Nature 599, 635–639 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Person, A. L., Gale, S. D., Farries, M. A. & Perkel, D. J. Organization of the songbird basal ganglia, including area X. J. Comp. Neurol. 508, 840–866 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Feenders, G. et al. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3, e1768 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Doya, K. & Sejnowski, T. A novel reinforcement model of birdsong vocalization learning. In Proc. Advances in Neural Information Processing Systems Vol. 7 (eds Tesauro, G. et al.) 101–108 (MIT, 1994).

  • Fee, M. S. & Goldberg, J. H. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198, 152–170 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Duffy, A., Latimer, K. W., Goldberg, J. H., Fairhall, A. L. & Gadagkar, V. Dopamine neurons evaluate natural fluctuations in performance quality. Cell Rep 38, 110574 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gadagkar, V. et al. Dopamine neurons encode performance error in singing birds. Science 354, 1278–1282 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Xiao, L. et al. A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98, 208–221.e5 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mohebi, A., Collins, V. L. & Berke, J. D. Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. eLife 12, e85011 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science https://doi.org/10.1126/science.abn0532 (2022).

  • Kramer, P. F. et al. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 110, 2949–2960.e4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, F. et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17, 1156–1166 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ko, D. & Wanat, M. J. Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner. J. Neurosci. 36, 2202–2211 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Roeser, A. et al. Dopaminergic error signals retune to social feedback during courtship. Nature 623, 375–380 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bottjer, S. W., Halsema, K. A., Brown, S. A. & Miesner, E. A. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol. 279, 312–326 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Chantranupong, L. et al. Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature 621, 577–585 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krok, A. C. et al. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 621, 543–549 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139–1146 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kozhevnikov, A. A. & Fee, M. S. Singing-related activity of identified HVC neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Goldberg, J. H. & Fee, M. S. Singing-related neural activity distinguishes four classes of putative striatal neurons in the songbird basal ganglia. J. Neurophysiol. 103, 2002–2014 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tumer, E. C. & Brainard, M. S. Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong. Nature 450, 1240–1244 (2007).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Fiete, I. R., Fee, M. S. & Seung, H. S. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038–2057 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Farries, M. A. & Fairhall, A. L. Reinforcement learning with modulated spike timing dependent synaptic plasticity. J. Neurophysiol. 98, 3648–3665 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Long, M. A. & Fee, M. S. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ding, L. & Perkel, D. J. Dopamine modulates excitability of spiny neurons in the avian basal ganglia. J. Neurosci. 22, 5210–5218 (2002).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kubikova, L., Wada, K. & Jarvis, E. D. Dopamine receptors in a songbird brain. J. Comp. Neurol. 518, 741–769 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richfield, E. K., Penney, J. B. & Young, A. B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777 (1989).

    Article 
    PubMed 

    Google Scholar 

  • Kearney, M. G., Warren, T. L., Hisey, E., Qi, J. & Mooney, R. Discrete evaluative and premotor circuits enable vocal learning in songbirds. Neuron 104, 559–575.e6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamaguchi, K., Tschida, K. A., Yoon, I., Donald, B. R. & Mooney, R. Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches. eLife 3, e01833 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hamaguchi, K. & Mooney, R. Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability. J. Neurosci. 32, 11671–11687 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dan Foresee, F. & Hagan, M. T. Gauss-Newton approximation to Bayesian learning. In Proc. International Conference on Neural Networks 1930–1935 (IEEE, 1997).

  • Bates, D., Machler, M., Bolker, B. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).

    Google Scholar 

  • Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 58, 267–288 (1996).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinform. 9, 7 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pennington, Z. T. et al. ezTrack: an open-source video analysis pipeline for the investigation of animal behavior. Sci. Rep. 9, 19979 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Daily briefing: NASA finds secret ice base in Greenland
    Daily briefing: NASA finds secret ice base in Greenland
    Liquid metal pumps itself out of gels to make artificial vasculature
    Liquid metal pumps itself out of gels to make artificial vasculature
    Scientists globally are racing to save vital health databases taken down amid Trump chaos
    Scientists globally are racing to save vital health databases taken down amid Trump chaos
    Build your own receptor: modular system can be tailored to any antigen
    Build your own receptor: modular system can be tailored to any antigen
    Distant sparkles hint at how the Milky Way formed
    Distant sparkles hint at how the Milky Way formed
    Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer - Nature
    Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer – Nature
    Headline Central | © 2025 | News