Engineered odorant receptors illuminate the basis of odour discrimination – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ikegami, K. et al. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proc. Natl Acad. Sci. USA 117, 2957–2967 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad Sci. USA 101, 2584–2589 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bjarnadóttir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Olender, T., Jones, T. E. M., Bruford, E. & Lancet, D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol. Biol. 20, 42 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2, ra9 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cichy, A., Shah, A., Dewan, A., Kaye, S. & Bozza, T. Genetic depletion of class I odorant receptors impacts perception of carboxylic acids. Curr. Biol. 29, 2687–2697.e4 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497, 486–489 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol. Evol. 1, 34–44 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Freitag, J., Krieger, J., Strotmann, J. & Breer, H. Two classes of olfactory receptors in Xenopus laevis. Neuron 15, 1383–1392 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615, 742–749 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, L. et al. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature 618, 193–200 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shang, P. et al. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 186, 5347–5362.e24 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, Z. et al. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature 624, 672–681 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H. et al. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature 624, 663–671 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gusach, A. et al. Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f. Nat. Commun. 15, 7555 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4, 416–433 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat. Protoc. 3, 1402–1413 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noe, F. et al. IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J. Biol. Methods 4, e81 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sternke, M., Tripp, K. W. & Barrick, D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc. Natl Acad. Sci. USA 116, 11275–11284 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Desjarlais, J. R. & Berg, J. M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl Acad. Sci. USA 90, 2256–2260 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porebski, B. T. & Buckle, A. M. Consensus protein design. Protein Eng. Des. Sel. 29, 245–251 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steipe, B., Schiller, B., Plückthun, A. & Steinbacher, S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lehmann, M. et al. From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, C. et al. Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family. Nat. Commun. 14, 8105 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nehmé, R. et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS ONE 12, e0175642 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic Press, 1995).

  • de March, C. A., Kim, S.-K., Antonczak, S., Goddard, W. A. 3rd & Golebiowski, J. G protein-coupled odorant receptors: from sequence to structure. Protein Sci. 24, 1543–1548 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isberg, V. et al. Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de March, C. A. et al. Conserved residues control activation of mammalian G protein-coupled odorant receptors. J. Am. Chem. Soc. 137, 8611–8616 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shayya, H. J. et al. ER stress transforms random olfactory receptor choice into axon targeting precision. Cell 185, 3896–3912.e22 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mainland, J. D., Li, Y. R., Zhou, T., Liu, W. L. L. & Matsunami, H. Human olfactory receptor responses to odorants. Sci. Data 2, 150002 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grosmaitre, X. et al. SR1, a mouse odorant receptor with an unusually broad response profile. J. Neurosci. 29, 14545–14552 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmiedeberg, K. et al. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J. Struct. Biol. 159, 400–412 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geithe, C., Noe, F., Kreissl, J. & Krautwurst, D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem. Senses 42, 181–193 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, N., Lee, S. & Vaidehi, N. Activation microswitches in adenosine receptor A2A function as rheostats in the cell membrane. Biochemistry 59, 4059–4071 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S., Nivedha, A. K., Tate, C. G. & Vaidehi, N. Dynamic role of the G protein in stabilizing the active state of the adenosine A2A receptor. Structure 27, 703–712.e3 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Q. et al. Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 4, e10441 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Del Mármol, J., Yedlin, M. A. & Ruta, V. The structural basis of odorant recognition in insect olfactory receptors. Nature 597, 126–131 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butterwick, J. A. et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560, 447–452 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bender, B. J., Marlow, B. & Meiler, J. Improving homology modeling from low-sequence identity templates in Rosetta: a case study in GPCRs. PLoS Comput. Biol. 16, e1007597 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wyganowski, K. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agozzino, L. & Dill, K. A. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc. Natl Acad. Sci. USA 115, 9092–9097 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Faust, B. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609, 846–853 (2022).

  • Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).

    Article 
    ADS 

    Google Scholar 

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF Pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bushdid, C., de March, C. A., Matsunami, H. & Golebiowski, J. Numerical models and in vitro assays to study odorant receptors. Methods Mol. Biol. 1820, 77–93 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Live-cell measurement of odorant receptor activation using a real-time cAMP assay. J. Vis. Exp. 128, 55831 (2017).

    Google Scholar 

  • Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.72.1 https://bioconductor.org/packages/Biostrings (2022).

  • Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U. et al.) 207–232 (Springer Berlin Heidelberg, 2007).

  • Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, e56 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang, S. et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426–429 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    These are the best ways to measure your body fat
    These are the best ways to measure your body fat
    Why AI could eat quantum computing’s lunch
    The Download: AI vs quantum, and the future of reproductive rights in the US
    How this grassroots effort could make AI voices more diverse
    The Download: diversifying AI voices, and a science-fiction glimpse into the future
    ‘We need to be ready for a new world’: scientists globally react to Trump election win
    ‘We need to be ready for a new world’: scientists globally react to Trump election win
    The oestrous cycle stage affects mammary tumour sensitivity to chemotherapy - Nature
    The oestrous cycle stage affects mammary tumour sensitivity to chemotherapy – Nature
    How the Ukraine-Russia war is reshaping the tech sector in Eastern Europe
    The Download: the Russia-Ukraine war’s effect on tech, and shaking up AI search
    Headline Central | © 2024 | News