Genetic defects of brain immunity in childhood herpes simplex encephalitis – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Gnann, J. W. Jr & Whitley, R. J. Herpes simplex encephalitis: an update. Curr. Infect. Dis. Rep. 19, 13 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Messacar, K., Fischer, M., Dominguez, S. R., Tyler, K. L. & Abzug, M. J. Encephalitis in US children. Infect. Dis. Clin. North. Am. 32, 145–162 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Tyler, K. L. Acute viral encephalitis. N. Engl. J. Med. 379, 557–566 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Smith, M. G., Lennette, E. H. & Reames, H. R. Isolation of the virus of herpes simplex and the demonstration of intranuclear inclusions in a case of acute encephalitis. Am. J. Pathol. 17, 55–68 (1941).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolman, B. & Longson, M. Herpes encephalitis. Acta Paediatr. Scand. 66, 243–246 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wertheim, J. O., Smith, M. D., Smith, D. M., Scheffler, K. & Kosakovsky Pond, S. L. Evolutionary origins of human herpes simplex viruses 1 and 2. Mol. Biol. Evol. 31, 2356–2364 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rathbun, M. M. & Szpara, M. L. A holistic perspective on herpes simplex virus (HSV) ecology and evolution. Adv. Virus Res. 110, 27–57 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, T. M. et al. Fatal human alphaherpesvirus 1 infection in free-ranging black-tufted marmosets in anthropized environments, Brazil, 2012–2019. Emerg. Infect. Dis. 28, 802–811 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, G. Herpesvirus transport to the nervous system and back again. Annu. Rev. Microbiol. 66, 153–176 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swanson, P. A. 2nd & McGavern, D. B. Viral diseases of the central nervous system. Curr. Opin. Virol. 11, 44–54 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitley, R. J. Herpes simplex virus infections of the central nervous system. Continuum 21, 1704–1713 (2015).

    PubMed 

    Google Scholar 

  • Wang, H., Davido, D. J., Mostafa, H. H. & Morrison, L. A. Efficacy of an HSV-1 neuro-attenuated vaccine in mice is reduced by preventing viral DNA replication. Viruses 14, 869 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elion, G. B. The biochemistry and mechanism of action of acyclovir. J. Antimicrob. Chemother. 12, 9–17 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gnann, J. W. Jr, Barton, N. H. & Whitley, R. J. Acyclovir: mechanism of action, pharmacokinetics, safety and clinical applications. Pharmacotherapy 3, 275–283 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campbell, M., Klapper, P. E. & Longson, M. Acyclovir in herpes encephalitis. Lancet 1, 38 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stahl, J. P. & Mailles, A. Herpes simplex virus encephalitis update. Curr. Opin. Infect. Dis. 32, 239–243 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Whitley, R. J., Gnann J. W. in The Humanherpesviruses (ed. Whitley, R. J., Roizman, B. & Lopez, C.) 69–105 (Raven Press, 1993).

  • Whitley, R. J. Herpes simplex virus in children. Curr. Treat. Options Neurol. 4, 231–237 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Abel, L. et al. Age-dependent Mendelian predisposition to herpes simplex virus type 1 encephalitis in childhood. J. Pediatr. 157, 623–629 (2010). 629 e621.

    Article 
    PubMed 

    Google Scholar 

  • Whitley, R. J. Herpes simplex encephalitis: adolescents and adults. Antiviral Res. 71, 141–148 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jubelt, B., Mihai, C., Li, T. M. & Veerapaneni, P. Rhombencephalitis/brainstem encephalitis. Curr. Neurol. Neurosci. Rep. 11, 543–552 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • George, B. P., Schneider, E. B. & Venkatesan, A. Encephalitis hospitalization rates and inpatient mortality in the United States, 2000–2010. PLoS ONE 9, e104169 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hjalmarsson, A., Blomqvist, P. & Skoldenberg, B. Herpes simplex encephalitis in Sweden, 1990–2001: incidence, morbidity, and mortality. Clin. Infect. Dis. 45, 875–880 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Dagsdottir, H. M. et al. Herpes simplex encephalitis in Iceland 1987–2011. SpringerPlus 3, 524 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. From second thoughts on the germ theory to a full-blown host theory. Proc. Natl Acad. Sci. USA 120, e2301186120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. & Abel, L. The microbe, the infection enigma, and the host. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-092123-022855 (2024).

  • Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tangye, S. G. & Latour, S. Primary immunodeficiencies reveal the molecular requirements for effective host defense against EBV infection. Blood 135, 644–655 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Beziat, V., Casanova, J. L. & Jouanguy, E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr. Opin. Virol. 51, 9–15 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koskiniemi, M. et al. Familial herpes encephalitis. Lancet 346, 1553 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gazquez, I., Jover, A., Puig, T., Vincente de Vera, C. & Rubio, M. Familial herpes encephalitis. Lancet 347, 910 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jackson, A. C., Melanson, M. & Rossiter, J. P. Familial herpes simplex encephalitis. Ann. Neurol. 51, 406–407 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Lerner, A. M., Levine, D. P. & Reyes, M. P. Two cases of herpes simplex virus encephalitis in the same family. N. Engl. J. Med. 308, 1481 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jouanguy, E. et al. Human inborn errors of immunity to herpes viruses. Curr. Opin. Immunol. 62, 106–122 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003). Autosomal recessive STAT1 deficiency was discovered in children with mycobacterial diseases and severe viral infections, including HSE in one child.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niehues, T. et al. A NEMO-deficient child with immunodeficiency yet without anhidrotic ectodermal dysplasia. J. Allergy Clin. Immunol. 114, 1456–1462 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Jouanguy, E. et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette–Guerin infection. N. Engl. J. Med. 335, 1956–1961 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965.e918 (2018). Biallelic variants of the DBR1 debranching enzyme impairing RNA lariat metabolism and antiviral immunity were discovered in children with HSV-1, IBV or norovirus infections of the brainstem.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lafaille, F. G. et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat. Med. 25, 1873–1884 (2019). Autosomal dominant deficiency of snoRNA31 was found to underlie forebrain HSE, revealing the role of snoRNA in antiviral defence.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le Voyer, T. et al. Genetic, immunological, and clinical features of 32 patients with autosomal recessive STAT1 deficiency. J. Immunol. 207, 133–152 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doffinger, R. et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-κB signaling. Nat. Genet. 27, 277–285 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puel, A. et al. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am. J. Hum. Genet. 78, 691–701 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Audry, M. et al. NEMO is a key component of NF-κB- and IRF-3-dependent TLR3-mediated immunity to herpes simplex virus. J. Allergy Clin. Immunol. 128, 610–617 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casrouge, A. et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006). UNC93B1 was the first human gene identified to confer a predisposition to isolated HSE.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tabeta, K. et al. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7, 156–164 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brinkmann, M. M. et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J. Cell Biol. 177, 265–275 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. Y. et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317, 1522–1527 (2007). Autosomal dominant TLR3 deficiency was identified in unrelated children with HSE, suggesting a role for defects of the UNC93B1-dependent TLR3 signalling pathway.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Picard, C. et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ku, C. L. et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J. Med. Genet. 44, 16–23 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • von Bernuth, H. et al. Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008).

    Article 
    ADS 

    Google Scholar 

  • Picard, C. et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 89, 403–425 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Garcia-Garcia, A. et al. Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia. J. Exp. Med. 220, e20220170–2023.

  • Guo, Y. et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J. Exp. Med. 208, 2083–2098 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, H. K. et al. TLR3 deficiency in herpes simplex encephalitis: high allelic heterogeneity and recurrence risk. Neurology 83, 1888–1897 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Armangue, T. et al. Neurologic complications in herpes simplex encephalitis: clinical, immunological and genetic studies. Brain 146, 4306–4319 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Perez de Diego, R. et al. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis. Immunity 33, 400–411 (2010). Autosomal dominant TRAF3 deficiency was found to impair TLR3 responsiveness in fibroblasts, used as a surrogate cell model, and to underlie HSE.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sancho-Shimizu, V. et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J. Clin. Invest. 121, 4889–4902 (2011). Autosomal recessive and autosomal dominant TRIF deficiencies were identified in otherwise healthy children with HSE.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herman, M. et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J. Exp. Med. 209, 1567–1582 (2012). Autosomal dominant TBK1 deficiency impairs TLR3-mediated type I interferon production in fibroblasts and underlies HSE in unrelated children.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, L. L. et al. Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J. Exp. Med. 212, 1371–1379 (2015). Autosomal dominant IRF3 deficiency was identified in an otherwise healthy adolescent with HSE.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamamoto, M. et al. A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T. & Seya, T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4, 161–167 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoebe, K. et al. Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 4, 1223–1229 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casanova, J. L., Abel, L. & Quintana-Murci, L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoebe, K. & Beutler, B. TRAF3: a new component of the TLR-signaling apparatus. Trends Mol. Med. 12, 187–189 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oganesyan, G. et al. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439, 208–211 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Saha, S. K. et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25, 3257–3263 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pomerantz, J. L. & Baltimore, D. NF-κB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J. 18, 6694–6704 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Bibert, S. et al. Herpes simplex encephalitis due to a mutation in an E3 ubiquitin ligase. Nat. Commun. 15, 3969 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, H. K. et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q., Bastard, P., Effort, C. H. G., Cobat, A. & Casanova, J. L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 603, 587–598 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, P. et al. A computational approach for detecting physiological homogeneity in the midst of genetic heterogeneity. Am. J. Hum. Genet. 108, 1012–1025 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piehler, J., Thomas, C., Garcia, K. C. & Schreiber, G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol. Rev. 250, 317–334 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lazear, H. M., Schoggins, J. W. & Diamond, M. S. Shared and distinct functions of type I and type III interferons. Immunity 50, 907–923 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastard, P. et al. Herpes simplex encephalitis in a patient with a distinctive form of inherited IFNAR1 deficiency. J. Clin. Invest. 131, e139980 (2021). Autosomal recessive complete IFNAR1 deficiency was found in a child with HSE, establishing the crucial role of type I interferon immunity in defence against HSV-1 infection of the human brain.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardy, M. P., Owczarek, C. M., Jermiin, L. S., Ejdeback, M. & Hertzog, P. J. Characterization of the type I interferon locus and identification of novel genes. Genomics 84, 331–345 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yazdani, R. et al. Candidiasis associated with very early onset inflammatory bowel disease: first IL10RB deficient case from the National Iranian Registry and review of the literature. Clin. Immunol. 205, 35–42 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Korol, C. B. et al. Fulminant viral hepatitis in two siblings with inherited IL-10RB deficiency. J. Clin. Immunol. 43, 406–420 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyts, I. & Casanova, J. L. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur. J. Immunol. 51, 1039–1061 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogishi, M. et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J. Exp. Med. 219, e20220094 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bucciol, G. et al. Human inherited complete STAT2 deficiency underlies inflammatory viral diseases. J. Clin. Invest. 133, e168321 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Garcia-Morato, M. B. et al. Impaired control of multiple viral infections in a family with complete IRF9 deficiency. J. Allergy Clin. Immunol. 144, 309–312.e10.

  • Hernandez, N. et al. Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastard, P. et al. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H., Qiu, K., He, Q., Lei, Q. & Lu, W. Mechanisms of blood–brain barrier disruption in herpes simplex encephalitis. J. Neuroimmune Pharmacol. 14, 157–172 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jacquemont, B. & Roizman, B. RNA synthesis in cells infected with herpes simplex virus: analysis of high molecular weight and symmetrical viral transcripts in herpesvirus infected cells. IARC Sci. Publ. 11, 39–48 (1975).

  • Weber, F., Wagner, V., Rasmussen, S. B., Hartmann, R. & Paludan, S. R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 80, 5059–5064 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hochrein, H. et al. Herpes simplex virus type-1 induces IFN-α production via Toll-like receptor 9-dependent and -independent pathways. Proc. Natl Acad. Sci. USA 101, 11416–11421 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yum, S., Li, M., Fang, Y. & Chen, Z. J. TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proc. Natl Acad. Sci. USA 118, e2100225118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiang, J. J. et al. Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity. Nat. Immunol. 19, 53–62 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naesens, L. et al. GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141. Sci. Immunol. 7, eabq4531 (2022). Autosomal recessive TFIIIA deficiency impairs RIG-I-mediated type I interferon production during HSV-1 infection, thereby underlying HSE.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L., Abel, L. & Quintana-Murci, l. Immunology taught by human genetics. Cold Spring Harb. Symp. Quant. Biol. 78, 157–172 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Casanova, J. L. & Abel, L. Inborn errors of immunity to infection: the rule rather than the exception. J. Exp. Med. 202, 197–201 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. & Abel, L. Primary immunodeficiencies: a field in its infancy. Science 317, 617–619 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Casanova, J. L. & Abel, L. The genetic theory of infectious diseases: brief history and selected illustrations. Annu. Rev. Genomics Hum. Genet. 14, 215–243 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. Y. et al. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 25, 19–33 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012). Human TLR3- or UNC93B1-deficient patient-specific induced pluripotent stem cell-derived cortical neurons and oligodendrocytes were much more susceptible to HSV-1 than control cells, suggesting that TLR3–IFNα/β-mediated cortical neuron- and oligodendrocyte-autonomous anti-HSV-1 immunity is crucial for host defence against HSV-1 in the human forebrain.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmer, B. et al. Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection. Proc. Natl Acad. Sci. USA 115, E8775–E8782 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fan, W., Christian, K. M., Song, H. & Ming, G. L. Applications of brain organoids for infectious diseases. J. Mol. Biol. 434, 167243 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, D. et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Invest. 131, e134529 (2021). This study demonstrated that TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro, through the basal IFNβ immunity-mediated control of early viral infection rather than the virus recognition-triggered amplification of IFNα/β production.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernard, J. J. et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat. Med. 18, 1286–1290 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle regeneration via TLR3. Nat. Commun. 10, 2811 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bsibsi, M. et al. The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J. Immunol. 184, 6929–6937 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gollmann-Tepekoylu, C. et al. Toll-like receptor 3 mediates aortic stenosis through a conserved mechanism of calcification. Circulation 147, 1518–1533 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paludan, S. R. & Mogensen, T. H. Constitutive and latent immune mechanisms exert ‘silent’ control of virus infections in the central nervous system. Curr. Opin. Immunol. 72, 158–166 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paludan, S. R., Pradeu, T., Masters, S. L. & Mogensen, T. H. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat. Rev. Immunol. 21, 137–150 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dorrity, T. J. et al. Long 3′UTRs predispose neurons to inflammation by promoting immunostimulatory double-stranded RNA formation. Sci. Immunol. 8, eadg2979 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, Z., Ni, G. & Damania, B. Innate sensing of DNA virus genomes. Annu. Rev. Virol. 5, 341–362 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Encephalitis and poor neuronal death-mediated control of herpes simplex virus in human inherited RIPK3 deficiency. Sci Immunol 8, eade2860 (2023). Autosomal recessive RIPK3 deficiency confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons independently of type I interferon immunity, providing proof of the principle that RIPK3-dependent cell death-mediated antiviral immunity is non-redundant.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, P. W. et al. Identification of RIP3, a RIP-like kinase that activates apoptosis and NFκB. Curr. Biol. 9, 539–542 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newton, K. RIPK1 and RIPK3: critical regulators of inflammation and cell death. Trends Cell Biol. 25, 347–353 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Z. et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe 17, 229–242 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nogusa, S. et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe 20, 13–24 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorjani, H. et al. An updated human snoRNAome. Nucleic Acids Res. 44, 5068–5082 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiss, A. M. Human Box H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol. 24, 11 (2004).

    Article 

    Google Scholar 

  • Jenkinson, E. M. et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat. Genet. 48, 1185–1192 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, Y. H. et al. SARS-CoV-2 brainstem encephalitis in human inherited DBR1 deficiency. J. Exp. Med. 221, e20231725 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arenas, J. & Hurwitz, J. Purification of a RNA debranching activity from HeLa cells. J. Biol. Chem. 262, 4274–4279 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruskin, B. & Green, M. R. An RNA processing activity that debranches RNA lariats. Science 229, 135–140 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nam, K., Lee, G., Trambley, J., Devine, S. E. & Boeke, J. D. Severe growth defect in a Schizosaccharomyces pombe mutant defective in intron lariat degradation. Mol. Cell. Biol. 17, 809–818 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, K. B. & Boeke, J. D. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65, 483–492 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nam, K. et al. Yeast lariat debranching enzyme. Substrate and sequence specificity. J. Biol. Chem. 269, 20613–20621 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacquier, A. & Rosbash, M. RNA splicing and intron turnover are greatly diminished by a mutant yeast branch point. Proc. Natl Acad. Sci. USA 83, 5835–5839 (1986).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shamseldin, H. E. et al. A founder DBR1 variant causes a lethal form of congenital ichthyosis. Hum. Genet. 142, 1491–1498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ru, S. et al. Human DBR1 deficiency impairs stress granule-dependent PKR antiviral immunity. J. Exp. Med. https://doi.org/10.1084/jem.20240010 (2024).

  • Ooi, S. L., Samarsky, D. A., Fournier, M. J. & Boeke, J. D. Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. RNA 4, 1096–1110 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray, J. L., Sheng, J. & Rubin, D. H. A role for H/ACA and C/D small nucleolar RNAs in viral replication. Mol. Biotechnol. 56, 429–437 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sedger, L. M. microRNA control of interferons and interferon induced anti-viral activity. Mol. Immunol. 56, 781–793 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Han, B. et al. Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development. Oncogene 36, 5382–5391 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ulfendahl, P. J., Kreivi, J. P. & Akusjarvi, G. Role of the branch site/3′-splice site region in adenovirus-2 E1A pre-mRNA alternative splicing: evidence for 5′- and 3′-splice site co-operation. Nucleic Acids Res. 17, 925–938 (1989).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plotch, S. J. & Krug, R. M. In vitro splicing of influenza viral NS1 mRNA and NS1-beta-globin chimeras: possible mechanisms for the control of viral mRNA splicing. Proc. Natl Acad. Sci. USA 83, 5444–5448 (1986).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perng, G. C. & Jones, C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip. Perspect. Infect. Dis. https://doi.org/10.1155/2010/262415 (2010).

  • Galvis, A. E., Fisher, H. E., Fan, H. & Camerini, D. Conformational changes in the 5′ end of the HIV-1 genome dependent on the debranching enzyme DBR1 during early stages of infection. J. Virol. 91, e01377-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, Y. H. et al. Human TMEFF1 is a restriction factor for herpes simplex virus in the brain. Nature 632, 390–400 (2024). The characterization of autosomal recessive TMEFF1 deficiency in two children with HSE revealed a new mechanism of HSV-1-specific cell-intrinsic antiviral immunity of the human brain.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eib, D. W. & Martens, G. J. A novel transmembrane protein with epidermal growth factor and follistatin domains expressed in the hypothalamo–hypophysial axis of Xenopus laevis. J. Neurochem. 67, 1047–1055 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morais da Silva, S., Gates, P. B., Eib, D. W., Martens, G. J. & Brockes, J. P. The expression pattern of tomoregulin-1 in urodele limb regeneration and mouse limb development. Mech. Dev. 104, 125–128 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eib, D. W. et al. Expression of the follistatin/EGF-containing transmembrane protein M7365 (tomoregulin-1) during mouse development. Mech. Dev. 97, 167–171 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dai, Y. et al. TMEFF1 is a neuron-specific restriction factor for herpes simplex virus. Nature 632, 383–389 (2024). Human cell line in vitro and mouse in vivo studies provided further evidence that TMEFF1 is a HSV-1 restriction factor in neurons.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Connolly, S. A., Jackson, J. O., Jardetzky, T. S. & Longnecker, R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat. Rev. Microbiol. 9, 369–381 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajbhandari, L. et al. Nectin-1 is an entry mediator for varicella-zoster virus infection of human neurons. J. Virol. 95, e0122721 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Casanova, J. L. Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc. Natl Acad. Sci. USA 112, E7128–7137 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puel, A., Bastard, P., Bustamante, J. & Casanova, J. L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gervais, A. et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in approximately 40% of patients. J. Exp. Med. 220, e20230661 (2023). Autoantibodies against type I interferons were found to underlie WNV encephalitis in 40% of the patients studied, making WNV encephalitis the best understood infectious disease to date.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gervais, A. et al. Auto-Abs neutraliing type I IFNs underlie severe tick-borne encephalitis in ~10% of patients. J. Exp. Med. 221, e20240637 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abel, L. & Casanova, J. L. Human determinants of age-dependent patterns of infectious death. Immunity 57, 1457–1465 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bibert, S. et al. Herpes simplex encephalitis in adult patients with MASP-2 deficiency. PLoS Pathog. 15, e1008168 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. et al. The ouroboros of autoimmunity. Nat. Immunol. 25, 743–754 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, J. et al. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J. Exp. Med. 218, e20211349 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogunjimi, B. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127, 3543–3556 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daza-Cajigal, V. et al. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front. Immunol. 13, 888427 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. & Abel, L. From rare disorders of immunity to common determinants of infection: following the mechanistic thread. Cell 185, 3086–3103 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. Y. et al. Human inborn errors of immunity to infection affecting cells other than leukocytes: from the immune system to the whole organism. Curr. Opin. Immunol. 59, 88–100 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casanova, J. L. & Abel, L. Mechanisms of viral inflammation and disease in humans. Science 374, 1080–1086 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nathan, C. Rethinking immunology. Science 373, 276–277 (2021).

  • Gaudet, R. G. et al. A human apolipoprotein L with detergent-like activity kills intracellular pathogens. Science 373, eabf8113 (2021).

  • Zhang, S. Y., Harschnitz, O., Studer, L. & Casanova, J. L. Neuron-intrinsic immunity to viruses in mice and humans. Curr. Opin. Immunol. 72, 309–317 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastard, P. et al. Interferon-β therapy in a patient with incontinentia pigmenti and autoantibodies against type I IFNs infected with SARS-CoV-2. J. Clin. Immunol. 41, 931–933 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, N. et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe 28, 455–464.e452 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereda, R. et al. Therapeutic effectiveness of interferon alpha 2b treatment for COVID-19 patient recovery. J. Interferon Cytokine Res. 40, 578–588 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mancini, M. & Vidal, S. M. Insights into the pathogenesis of herpes simplex encephalitis from mouse models. Mamm. Genome 29, 425–445 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. P. et al. Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J. Virol. 86, 2273–2281 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sancho-Shimizu, V. et al. Genetic susceptibility to herpes simplex virus 1 encephalitis in mice and humans. Curr. Opin. Allergy Clin. Immunol. 7, 495–505 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez, C. Genetics of natural resistance to herpesvirus infections in mice. Nature 258, 152–153 (1975).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lopez, C. Resistance to HSV-1 in the mouse is governed by two major, independently segregating, non-H-2 loci. Immunogenetics 11, 87–92 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cantin, E., Tanamachi, B., Openshaw, H., Mann, J. & Clarke, K. Gamma interferon (IFN-γ) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-γ ligand null-mutant mice. J. Virol. 73, 5196–5200 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sato, R. et al. Combating herpesvirus encephalitis by potentiating a TLR3–mTORC2 axis. Nat. Immunol. 19, 1071–1082 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reinert, L. S. et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J. Clin. Invest. 122, 1368–1376 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orvedahl, A. & Levine, B. Autophagy and viral neurovirulence. Cell Microbiol. 10, 1747–1756 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12, 334–345 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katzenell, S. & Leib, D. A. Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons. J. Virol. 90, 4706–4719 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    How the world’s biggest laser smashed a nuclear-fusion record
    How the world’s biggest laser smashed a nuclear-fusion record
    New species of tardigrade reveals secrets of radiation-resisting powers
    New species of tardigrade reveals secrets of radiation-resisting powers
    Daily briefing: AlphaFold developers share Nobel Prize in Chemistry
    Daily briefing: AlphaFold developers share Nobel Prize in Chemistry
    What's so special about the human brain?
    What’s so special about the human brain?
    Mumps is rising in some nations — but a fresh dose of vaccine might help
    Mumps is rising in some nations — but a fresh dose of vaccine might help
    Who’s to blame for climate change? It’s surprisingly complicated.
    Who’s to blame for climate change? It’s surprisingly complicated.
    Headline Central | © 2024 | News