Global biodiversity loss from outsourced deforestation – Nature

Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).
Google Scholar
Kuemmerle, T., Kastner, T., Meyfroidt, P. & Qin, S. in Telecoupling: Exploring Land-Use Change in a Globalised World (eds Friis, C. & Nielsen, J. O.) 281–302 (Palgrave Macmillan, 2019).
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
Google Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).
Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48, 607–615 (1998).
Google Scholar
Grooten, M. & Almond, R. E. A. Living Planet Report—2018: Aiming Higher (WWF, 2018).
Bjelle, E. L., Kuipers, K., Verones, F. & Wood, R. Trends in national biodiversity footprints of land use. Ecol. Econ. 185, 107059 (2021).
Google Scholar
Hoang, N. T. et al. Mapping potential conflicts between global agriculture and terrestrial conservation. Proc. Natl Acad. Sci. USA 120, e2208376120 (2023).
Google Scholar
Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).
Google Scholar
Malik, A., Lenzen, M. & Fry, J. Biodiversity impact assessments using nested trade models. Environ. Sci. Technol. 56, 7378–7380 (2022).
Google Scholar
Kitzes, J. et al. Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv. Lett. 10, 531–538 (2017).
Google Scholar
Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 23 (2017).
Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation (Oxford Univ. Press, 2008).
Caughley, G. Directions in conservation biology. Conserv. Biol. 82, 195–210 (1994).
Google Scholar
Soule, M. E. & Wilcove, B. A. (eds) Conservation Biology: An Evolutionary–Ecological Perspective (Sinauer, 1980).
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Google Scholar
Levers, C. & Müller, D. in Telecoupling: Exploring Land-Use Change in a Globalised World (eds Friis, C. & Nielsen, J. O.) 89–113 (Palgrave Macmillan, 2019).
Mayer, A. L., Kauppi, P. E., Angelstam, P. K., Zhang, Y. & Tikka, P. M. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).
Google Scholar
Smith, S. B., Gotoh, T. & Greenwood, P. L. Current situation and future prospects for global beef production: overview of special issue. Asian-Australasian J. Anim. Sci. 31, 927–932 (2018).
Google Scholar
Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).
Google Scholar
Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).
Google Scholar
Data Zone (BirdLife International); http://datazone.birdlife.org/species/requestdis (Accessed 31 January 2023).
Red List of Threatened Species (IUCN, 2022); https://www.iucnredlist.org/resources/spatial-data-download (Accessed 31 January 2023).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
May, R. M. The future of biological diversity in a crowded world. Curr. Sci. 82, 1325–1331 (2002).
Google Scholar
Andriamparany, J. N., Heritiana, J. T., Hänke, H., Kunz, S. & Schlecht, E. Market supply of livestock and animal products in north-eastern Madagascar—the role of the vanilla boom. Sci. Afr. 19, e01526 (2023).
Hänke, H. et al. Socio-economic, Land Use and Value Chain Perspectives on Vanilla Farming in the SAVA Region (North-eastern Madagascar): The Diversity Turn Baseline Study (DTBS). (Georg-August-Universität Göttingen, 2018).
Boone, C., Kaila, H. K. & Sahn, D. E. Posh spice or scary spice? The impacts of Madagascar’s vanilla boom on household well-being. SSRN Electron. J. https://doi.org/10.2139/ssrn.4085179 (2022).
Burivalova, Z., Şekercioǧlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).
Google Scholar
Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).
Google Scholar
Kadoya, T., Takeuchi, Y., Shinoda, Y. & Nansai, K. Shifting agriculture is the dominant driver of forest disturbance in threatened forest species’ ranges. Commun. Earth Environ. 3, 108 (2022).
Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B 359, 1465–1476 (2004).
Google Scholar
Mills, J. H. & Waite, T. A. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve. Ecol. Econ. 68, 2087–2095 (2009).
Andreoni, J. & Levinson, A. The simple analytics of the environmental Kuznets curve. J. Public Econ. 80, 269–286 (2001).
Google Scholar
Grossman, G. M. & Krueger, A. B. Economic growth and the environment. Q. J. Econ. 110, 353–377 (1995).
Naidoo, R. & Adamowicz, W. L. Effects of economic prosperity on numbers of threatened species. Conserv. Biol. 15, 1021–1029 (2001).
Google Scholar
McPherson, M. A. & Nieswiadomy, M. L. Environmental Kuznets curve: threatened species and spatial effects. Ecol. Econ. 55, 395–407 (2005).
Google Scholar
Dietz, S. & Adger, W. N. Economic growth, biodiversity loss and conservation effort. J. Environ. Manag. 68, 23–35 (2003).
Google Scholar
Tevie, J., Grimsrud, K. M. & Berrens, R. P. Testing the environmental kuznets curve hypothesis for biodiversity risk in the US: a spatial econometric approach. Sustainability 3, 2182–2199 (2011).
Google Scholar
Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).
Mozumder, P., Berrens, R. P. & Bohara, A. K. Is there an environmental Kuznets curve for the risk of biodiversity loss? J. Dev. Areas 39, 175–190 (2006).
Google Scholar
USA Location Map (Geographic.Media, 1970); https://geographic.media/north-america/usa/usa-maps/usa-location-map.
Cattle & Beef Statistics & Information (USDA, 2022).
Major Uses of Land in the United States, 2012 (USDA, 2012).
Wunsch, N.-G. Palm Oil Consumption in the United States from 2000 to 2022 (Statista, 2023); https://www.statista.com/statistics/301032/palm-oil-consumption-united-states/#:~:text=Americans.
Neate-Clegg, M. H. C. & Şekercioǧlu, Ç. H. Agricultural land in the Amazon basin supports low bird diversity and is a poor replacement for primary forest. Condor 122, duaa020 (2020).
Ritchie, H., Spooner, F. & Roser, M. Forests and Deforestation (OurWorldinData, 2021); https://ourworldindata.org/forests-and-deforestation.
Grain: World Markets and Trade (USDA, 2022) (Accessed on 31 August 2023).
FAOSTAT: Crops and Livestock Products (FAO, 2022); https://www.fao.org/faostat/en/#data/QCL (Accessed on 31 August 2023).
Classification Schemes (IUCN, 2022); https://www.iucnredlist.org/resources/classification-schemes (Accessed on 31 January 2023).
Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).
Moran, D. & Wood, R. Convergence between the Eora, Wiod, Exiobase, and Openeu’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).
Google Scholar
Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).
Google Scholar
Lenzen, M. et al. Compiling and using input-output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).
Google Scholar
Ritchie, H. & Roser, M. Land Use (Our World in Data, 2019); https://ourworldindata.org/land-use.
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Google Scholar
Hijmans, R. terra: Spatial data analysis. R package version 1.7-29 (2023).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).
Hijmans, R. raster: Geographic data analysis and modeling. R package version 3.6-20 (2023).
Ross, N. fasterize: Fast polygon to raster conversion. R package version 1.0.4 (2022).
Lamiguero, O. P. & Hijmans, R. rasterVis. R package version 0.51.5 (2023).
Bivand, R. & Rundel, C. rgeos: Interface to geometry engine—open source (GEOS). R package version 0.6-4 (2023).
Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the geospatial data abstraction library. R package version 1.6-7 (2023).
Csárdi, G. et al. remotes: R package installation from remote repositories, including GitHub. R package version 2.4.2 (2021).
Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).
Google Scholar
Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. R package version 1.1.2 (2023).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Massicotte, P. & South, A. rnaturalearth: World map data from Natural Earth. R package version 0.3.3 (2023).
South, A. rnaturalearthdata: World vector map data from Natural Earth used in rnaturalearth. R package version 0.1.0 (2017).
South, A., Michael, S. & Massicotte, P. rnaturalearthhires: High resolution world vector map data from Natural Earth used in rnaturalearth. R package version 0.2.1 (2023).
Gearty, W. & Chamberlain, S. rredlist: IUCN Red list client. R package version 0.7.1 (2022).
Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R package version 3.4.2 (2023).
South, A. rworldmap: A new R package for mapping global data. R J. 3, 35–43 (2011).
Google Scholar
Stahel, W. Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler (Vieweg+Teubner, 2008).
Wiebe, R. A. & Wilcove, D. S. Processed species-level data for ‘Global biodiversity loss from outsourced deforestation’ [Data set]. Zenodo https://doi.org/10.5281/zenodo.14030743 (2024).