Global biodiversity loss from outsourced deforestation – Nature

You May Be Interested In:The Download: HIV prevention shots, and fixing a broken sex doll


  • Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kuemmerle, T., Kastner, T., Meyfroidt, P. & Qin, S. in Telecoupling: Exploring Land-Use Change in a Globalised World (eds Friis, C. & Nielsen, J. O.) 281–302 (Palgrave Macmillan, 2019).

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

  • Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience 48, 607–615 (1998).

    Article 

    Google Scholar 

  • Grooten, M. & Almond, R. E. A. Living Planet Report—2018: Aiming Higher (WWF, 2018).

  • Bjelle, E. L., Kuipers, K., Verones, F. & Wood, R. Trends in national biodiversity footprints of land use. Ecol. Econ. 185, 107059 (2021).

    Article 

    Google Scholar 

  • Hoang, N. T. et al. Mapping potential conflicts between global agriculture and terrestrial conservation. Proc. Natl Acad. Sci. USA 120, e2208376120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. J. Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis. Environ. Sci. Technol. 51, 3298–3306 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Malik, A., Lenzen, M. & Fry, J. Biodiversity impact assessments using nested trade models. Environ. Sci. Technol. 56, 7378–7380 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kitzes, J. et al. Consumption-based conservation targeting: linking biodiversity loss to upstream demand through a global wildlife footprint. Conserv. Lett. 10, 531–538 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 23 (2017).

  • Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation (Oxford Univ. Press, 2008).

  • Caughley, G. Directions in conservation biology. Conserv. Biol. 82, 195–210 (1994).

    MATH 

    Google Scholar 

  • Soule, M. E. & Wilcove, B. A. (eds) Conservation Biology: An Evolutionary–Ecological Perspective (Sinauer, 1980).

  • Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Levers, C. & Müller, D. in Telecoupling: Exploring Land-Use Change in a Globalised World (eds Friis, C. & Nielsen, J. O.) 89–113 (Palgrave Macmillan, 2019).

  • Mayer, A. L., Kauppi, P. E., Angelstam, P. K., Zhang, Y. & Tikka, P. M. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, S. B., Gotoh, T. & Greenwood, P. L. Current situation and future prospects for global beef production: overview of special issue. Asian-Australasian J. Anim. Sci. 31, 927–932 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Data Zone (BirdLife International); http://datazone.birdlife.org/species/requestdis (Accessed 31 January 2023).

  • Red List of Threatened Species (IUCN, 2022); https://www.iucnredlist.org/resources/spatial-data-download (Accessed 31 January 2023).

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • May, R. M. The future of biological diversity in a crowded world. Curr. Sci. 82, 1325–1331 (2002).

    MATH 

    Google Scholar 

  • Andriamparany, J. N., Heritiana, J. T., Hänke, H., Kunz, S. & Schlecht, E. Market supply of livestock and animal products in north-eastern Madagascar—the role of the vanilla boom. Sci. Afr. 19, e01526 (2023).

  • Hänke, H. et al. Socio-economic, Land Use and Value Chain Perspectives on Vanilla Farming in the SAVA Region (North-eastern Madagascar): The Diversity Turn Baseline Study (DTBS). (Georg-August-Universität Göttingen, 2018).

  • Boone, C., Kaila, H. K. & Sahn, D. E. Posh spice or scary spice? The impacts of Madagascar’s vanilla boom on household well-being. SSRN Electron. J. https://doi.org/10.2139/ssrn.4085179 (2022).

  • Burivalova, Z., Şekercioǧlu, Ç. H. & Koh, L. P. Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kadoya, T., Takeuchi, Y., Shinoda, Y. & Nansai, K. Shifting agriculture is the dominant driver of forest disturbance in threatened forest species’ ranges. Commun. Earth Environ. 3, 108 (2022).

  • Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B 359, 1465–1476 (2004).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Mills, J. H. & Waite, T. A. Economic prosperity, biodiversity conservation, and the environmental Kuznets curve. Ecol. Econ. 68, 2087–2095 (2009).

  • Andreoni, J. & Levinson, A. The simple analytics of the environmental Kuznets curve. J. Public Econ. 80, 269–286 (2001).

    Article 
    MATH 

    Google Scholar 

  • Grossman, G. M. & Krueger, A. B. Economic growth and the environment. Q. J. Econ. 110, 353–377 (1995).

  • Naidoo, R. & Adamowicz, W. L. Effects of economic prosperity on numbers of threatened species. Conserv. Biol. 15, 1021–1029 (2001).

    Article 
    MATH 

    Google Scholar 

  • McPherson, M. A. & Nieswiadomy, M. L. Environmental Kuznets curve: threatened species and spatial effects. Ecol. Econ. 55, 395–407 (2005).

    Article 
    MATH 

    Google Scholar 

  • Dietz, S. & Adger, W. N. Economic growth, biodiversity loss and conservation effort. J. Environ. Manag. 68, 23–35 (2003).

    Article 
    MATH 

    Google Scholar 

  • Tevie, J., Grimsrud, K. M. & Berrens, R. P. Testing the environmental kuznets curve hypothesis for biodiversity risk in the US: a spatial econometric approach. Sustainability 3, 2182–2199 (2011).

    Article 

    Google Scholar 

  • Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).

  • Mozumder, P., Berrens, R. P. & Bohara, A. K. Is there an environmental Kuznets curve for the risk of biodiversity loss? J. Dev. Areas 39, 175–190 (2006).

    Article 
    MATH 

    Google Scholar 

  • USA Location Map (Geographic.Media, 1970); https://geographic.media/north-america/usa/usa-maps/usa-location-map.

  • Cattle & Beef Statistics & Information (USDA, 2022).

  • Major Uses of Land in the United States, 2012 (USDA, 2012).

  • Wunsch, N.-G. Palm Oil Consumption in the United States from 2000 to 2022 (Statista, 2023); https://www.statista.com/statistics/301032/palm-oil-consumption-united-states/#:~:text=Americans.

  • Neate-Clegg, M. H. C. & Şekercioǧlu, Ç. H. Agricultural land in the Amazon basin supports low bird diversity and is a poor replacement for primary forest. Condor 122, duaa020 (2020).

  • Ritchie, H., Spooner, F. & Roser, M. Forests and Deforestation (OurWorldinData, 2021); https://ourworldindata.org/forests-and-deforestation.

  • Grain: World Markets and Trade (USDA, 2022) (Accessed on 31 August 2023).

  • FAOSTAT: Crops and Livestock Products (FAO, 2022); https://www.fao.org/faostat/en/#data/QCL (Accessed on 31 August 2023).

  • Classification Schemes (IUCN, 2022); https://www.iucnredlist.org/resources/classification-schemes (Accessed on 31 January 2023).

  • Hansen, A. et al. Global humid tropics forest structural condition and forest structural integrity maps. Sci. Data 6, 232 (2019).

  • Moran, D. & Wood, R. Convergence between the Eora, Wiod, Exiobase, and Openeu’s consumption-based carbon accounts. Econ. Syst. Res. 26, 245–261 (2014).

    Article 
    MATH 

    Google Scholar 

  • Godar, J., Persson, U. M., Tizado, E. J. & Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 112, 25–35 (2015).

    Article 

    Google Scholar 

  • Lenzen, M. et al. Compiling and using input-output frameworks through collaborative virtual laboratories. Sci. Total Environ. 485–486, 241–251 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Ritchie, H. & Roser, M. Land Use (Our World in Data, 2019); https://ourworldindata.org/land-use.

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hijmans, R. terra: Spatial data analysis. R package version 1.7-29 (2023).

  • Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 
    MATH 

    Google Scholar 

  • Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).

  • Hijmans, R. raster: Geographic data analysis and modeling. R package version 3.6-20 (2023).

  • Ross, N. fasterize: Fast polygon to raster conversion. R package version 1.0.4 (2022).

  • Lamiguero, O. P. & Hijmans, R. rasterVis. R package version 0.51.5 (2023).

  • Bivand, R. & Rundel, C. rgeos: Interface to geometry engine—open source (GEOS). R package version 0.6-4 (2023).

  • Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the geospatial data abstraction library. R package version 1.6-7 (2023).

  • Csárdi, G. et al. remotes: R package installation from remote repositories, including GitHub. R package version 2.4.2 (2021).

  • Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Wickham, H., François, R., Henry, L., Müller, K. & Vaughan, D. dplyr: A grammar of data manipulation. R package version 1.1.2 (2023).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Massicotte, P. & South, A. rnaturalearth: World map data from Natural Earth. R package version 0.3.3 (2023).

  • South, A. rnaturalearthdata: World vector map data from Natural Earth used in rnaturalearth. R package version 0.1.0 (2017).

  • South, A., Michael, S. & Massicotte, P. rnaturalearthhires: High resolution world vector map data from Natural Earth used in rnaturalearth. R package version 0.2.1 (2023).

  • Gearty, W. & Chamberlain, S. rredlist: IUCN Red list client. R package version 0.7.1 (2022).

  • Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw geographical maps. R package version 3.4.2 (2023).

  • South, A. rworldmap: A new R package for mapping global data. R J. 3, 35–43 (2011).

    Article 
    MATH 

    Google Scholar 

  • Stahel, W. Statistische Datenanalyse: Eine Einführung für Naturwissenschaftler (Vieweg+Teubner, 2008).

  • Wiebe, R. A. & Wilcove, D. S. Processed species-level data for ‘Global biodiversity loss from outsourced deforestation’ [Data set]. Zenodo https://doi.org/10.5281/zenodo.14030743 (2024).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Aqueous-based recycling of perovskite photovoltaics - Nature
    Aqueous-based recycling of perovskite photovoltaics – Nature
    First sighting of ‘neutrino fog’ sparks excitement – but is it bad news for dark matter?
    First sighting of ‘neutrino fog’ sparks excitement – but is it bad news for dark matter?
    How to sustain scientific collaboration amid worsening US–China relations
    How to sustain scientific collaboration amid worsening US–China relations
    Give ‘science for peace’ a chance
    Give ‘science for peace’ a chance
    Why even physicists still don’t understand quantum theory 100 years on
    Why even physicists still don’t understand quantum theory 100 years on
    Cellular ATP demand creates metabolically distinct subpopulations of mitochondria - Nature
    Cellular ATP demand creates metabolically distinct subpopulations of mitochondria – Nature
    Headline Central | © 2025 | News