Harnessing plasticity in sequential metamaterials for ideal shock absorption – Nature

You May Be Interested In:The startup trying to turn the web into a database


  • Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Mater. 116, 14–28 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Meeussen, A. & van Hecke, M. Multistable sheets with rewritable patterns for switchable shape-morphing. Nature 621, 516–520 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, G. P., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, T., Bico, J. & Roman, B. Pneumatic cells toward absolute Gaussian morphing. Science 381, 862–867 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Coulais, C., Sabbadini, A., Vink, F. & van Hecke, M. Multi-step self-guided pathways for shape-changing metamaterials. Nature 561, 512–515 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials. Phys. Rev. Lett. 113, 175503 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Restrepo, D., Mankame, N. D. & Zavattieri, P. D. Phase transforming cellular materials. Extreme Mech. Lett. 4, 52–60 (2015).

    Article 

    Google Scholar 

  • Lakes, R. Foam structures with a negative Poisson’s ratio. Science 235, 1038–1040 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bertoldi, K., Reis, P. M., Willshaw, S. & Mullin, T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22, 361–366 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babaee, S. et al. 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25, 5044–5049 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, L. et al. Guided transition waves in multistable mechanical metamaterials. Proc. Natl Acad. Sci. 117, 2319–2325 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, B., Wang, P., He, Q., Tournat, V. & Bertoldi, K. Metamaterials with amplitude gaps for elastic solitons. Nat. Commun. 9, 3410 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bauer, J., Kraus, J. A., Crook, C., Rimoli, J. J. & Valdevit, L. Tensegrity metamaterials: toward failure-resistant engineering systems through delocalized deformation. Adv. Mater. 33, 2005647 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dykstra, D. M., Lenting, C., Masurier, A. & Coulais, C. Buckling metamaterials for extreme vibration damping. Adv. Mater. 35, 2301747 (2023).

    Article 
    CAS 

    Google Scholar 

  • Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Djellouli, A. et al. Shell buckling for programmable metafluids. Nature 628, 545–550 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lubbers, L. A., van Hecke, M. & Coulais, C. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams. J. Mech. Phys. Solids 106, 191–206 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Chen, Y. & Jin, L. Reusable energy-absorbing architected materials harnessing snapping-back buckling of wide hyperelastic columns. Adv. Funct. Mater. 31, 2102113 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dykstra, D. M. J., Janbaz, S. & Coulais, C. The extreme mechanics of viscoelastic metamaterials. APL Mater 10, 080702 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bossart, A., Dykstra, D. M., van der Laan, J. & Coulais, C. Oligomodal metamaterials with multifunctional mechanics. Proc. Natl Acad. Sci. 118, e2018610118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Janbaz, S., Narooei, K., van Manen, T. & Zadpoor, A. Strain rate–dependent mechanical metamaterials. Sci. Adv. 6, eaba0616 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Janbaz, S. & Coulais, C. Diffusive kinks turn kirigami into machines. Nat. Commun. 15, 1255 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Evans, A. G. et al. Concepts for enhanced energy absorption using hollow micro-lattices. Int. J. Impact Eng. 37, 947–959 (2010).

    Article 
    ADS 

    Google Scholar 

  • Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Zhang, F. et al. Shape morphing of plastic films. Nat. Commun. 13, 7294 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hwang, D., Barron III, E. J., Haque, A. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 7, eabg2171 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ren, X., Shen, J., Ghaedizadeh, A., Tian, H. & Xie, Y. M. Experiments and parametric studies on 3D metallic auxetic metamaterials with tuneable mechanical properties. Smart Mater. Struct. 24, 095016 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ghaedizadeh, A., Shen, J., Ren, X. & Xie, Y. M. Tuning the performance of metallic auxetic metamaterials by using buckling and plasticity. Materials 9, 54 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bažant, Z. P. & Cedolin, L. Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories (World Scientific, 2010).

  • Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P. & Wegener, M. Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 5865–5870 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rafsanjani, A., Jin, L., Deng, B. & Bertoldi, K. Propagation of pop ups in kirigami shells. Proc. Natl Acad. Sci. 116, 8200–8205 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Melancon, D., Forte, A. E., Kamp, L. M., Gorissen, B. & Bertoldi, K. Inflatable origami: multimodal deformation via multistability. Adv. Funct. Mater. 32, 2201891 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bense, H. & van Hecke, M. Complex pathways and memory in compressed corrugated sheets. Proc. Natl Acad. Sci. 118, e2111436118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, X., Guzmán, M., Carpentier, D., Bartolo, D. & Coulais, C. Non-orientable order and non-commutative response in frustrated metamaterials. Nature 618, 506–512 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kwakernaak, L. J. & van Hecke, M. Counting and sequential information processing in mechanical metamaterials. Phys. Rev. Lett. 130, 268204 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Novelino, L. S., Ze, Q., Wu, S., Paulino, G. H. & Zhao, R. Untethered control of functional origami microrobots with distributed actuation. Proc. Natl Acad. Sci. 117, 24096–24101 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fu, H. et al. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Velay-Lizancos, M., Restrepo, D., Mankame, N. D. & Zavattieri, P. D. Architected material analogs for shape memory alloys. Matter 4, 1990–2012 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fancher, R. et al. Dependence of the kinetic energy absorption capacity of bistable mechanical metamaterials on impactor mass and velocity. Extreme Mech. Lett. 63, 102044 (2023).

    Article 

    Google Scholar 

  • Overvelde, J. T. B., Shan, S. & Bertoldi, K. Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Adv. Mater. 24, 2337–2342 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Overvelde, J. T. & Bertoldi, K. Relating pore shape to the non-linear response of periodic elastomeric structures. J. Mech. Phys. Solids 64, 351–366 (2014).

    Article 
    ADS 

    Google Scholar 

  • van Mastrigt, R., Dijkstra, M., Van Hecke, M. & Coulais, C. Machine learning of implicit combinatorial rules in mechanical metamaterials. Phys. Rev. Lett. 129, 198003 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • van Mastrigt, R., Coulais, C. & van Hecke, M. Emergent nonlocal combinatorial design rules for multimodal metamaterials. Phys. Rev. E 108, 065002 (2023).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Deng, F., Nguyen, Q.-K. & Zhang, P. Liquid metal lattice materials with simultaneously high strength and reusable energy absorption. Appl. Mater. Today 29, 101671 (2022).

    Article 

    Google Scholar 

  • Papka, S. D. & Kyriakides, S. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb. Acta Mater. 46, 2765–2776 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deshpande, V., Ashby, M. & Fleck, N. Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 1035–1040 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).

    Article 
    CAS 

    Google Scholar 

  • Tancogne-Dejean, T. & Mohr, D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. Int. J. Mech. Sci. 141, 101–116 (2018).

    Article 

    Google Scholar 

  • Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Hwang, D., Barron, E. J. III, Haque, A. B. M. T. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robot. 7, eabg2171 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Shi, Y. et al. Plasticity-induced origami for assembly of three dimensional metallic structures guided by compressive buckling. Extreme Mech. Lett. 11, 105–110 (2017).

    Article 

    Google Scholar 

  • Stern, M., Pinson, M. B. & Murugan, A. Continual learning of multiple memories in mechanical networks. Phys. Rev. X 10, 031044 (2020).

    CAS 

    Google Scholar 

  • Pashine, N., Hexner, D., Liu, A. J. & Nagel, S. R. Directed aging, memory, and nature’s greed. Sci. Adv. 5, eaax4215 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Euler, L. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti Vol. 1 (Springer, 1952).

  • Shanley, F. R. Inelastic column theory. J. Aeronaut. Sci. 14, 261–268 (1947).

    Article 

    Google Scholar 

  • Hutchinson, J. W. Plastic buckling. Adv. Appl. Mech. 14, 67–144 (1974).

    Article 

    Google Scholar 

  • Cimetière, A., Leger, A. & Pratt, E. On the coupling of large deformations and elastic-plasticity in the mechanics of a simple system. J. Mech. Phys. Solids 128, 239–254 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Liu, W. Leveraging plasticity to design sequential metamaterials with ideal shock absorption. Zenodo https://doi.org/10.5281/zenodo.10074741 (2024).

  • Resch, R. D. Geometrical device having articulated relatively movable sections. US patent 3,201,894 (1965).

  • Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials. Nat. Phys. 14, 40–44 (2018).

    Article 
    CAS 

    Google Scholar 

  • Czajkowski, M., Coulais, C., van Hecke, M. & Rocklin, D. Conformal elasticity of mechanism-based metamaterials. Nat. Commun. 13, 211 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Space weather mapped by millions of smartphones
    Space weather mapped by millions of smartphones
    Cellular atlases are unlocking the mysteries of the human body
    Cellular atlases are unlocking the mysteries of the human body
    The birth of Bronze Age pastoralism where Europe meets Asia
    The birth of Bronze Age pastoralism where Europe meets Asia
    Act now to stop millions of research papers from disappearing
    Act now to stop millions of research papers from disappearing
    How to demonstrate the real-world impact of your research
    How to demonstrate the real-world impact of your research
    Surprise finding reveals mitochondrial ‘energy factories’ come in two different types
    Surprise finding reveals mitochondrial ‘energy factories’ come in two different types
    Headline Central | © 2024 | News