How the extra X chromosome impairs the development of male fetal germ cells – Nature

You May Be Interested In:How to… delete your 23andMe data


  • Guo, F. et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell 161, 1437–1452 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chitiashvili, T. et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat. Cell Biol. 22, 1436–1446 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacobs, P. A. & Strong, J. A. A case of human intersexuality having a possible XXY sex-determining mechanism. Nature 183, 302–303 (1959).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. Dissecting the epigenomic dynamics of human fetal germ cell development at single-cell resolution. Cell Res. 31, 463–477 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sangrithi, M. N. et al. Non-canonical and sexually dimorphic X dosage compensation states in the mouse and human germline. Dev. Cell 40, 289–301 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bourrouillou, G., Dastugue, N. & Colombies, P. Chromosome studies in 952 infertile males with a sperm count below 10 million/ml. Hum. Genet. 71, 366–367 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Retief, A. E. et al. Chromosome studies in 496 infertile males with a sperm count below 10 million/ml. Hum. Genet. 66, 162–164 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van Saen, D. et al. When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome? Hum. Reprod. 33, 1009–1022 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Winge, S. B. et al. Transcriptome analysis of the adult human Klinefelter testis and cellularity-matched controls reveals disturbed differentiation of Sertoli- and Leydig cells. Cell Death Dis. 9, 586 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Laurentino, S. et al. High-resolution analysis of germ cells from men with sex chromosomal aneuploidies reveals normal transcriptome but impaired imprinting. Clin. Epigenetics 11, 127 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, L. et al. Single-cell analysis of developing and azoospermia human testicles reveals central role of Sertoli cells. Nat. Commun. 11, 5683 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mahyari, E. et al. Comparative single-cell analysis of biopsies clarifies pathogenic mechanisms in Klinefelter syndrome. Am. J. Hum. Genet. 108, 1924–1945 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murken, J. D. et al. Klinefelter’s syndrome in a fetus. Lancet 2, 171 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coerdt, W., Rehder, H., Gausmann, I., Johannisson, R. & Gropp, A. Quantitative histology of human fetal testes in chromosomal disease. Pediatr. Pathol. 3, 245–259 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jequier, A. M. & Bullimore, N. J. Testicular and epididymal histology in a fetus with Klinefelter’s syndrome at 22 weeks’ gestation. Br. J. Urol. 63, 214–215 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winge, S. B. et al. Transcriptome profiling of fetal Klinefelter testis tissue reveals a possible involvement of long non-coding RNAs in gonocyte maturation. Hum. Mol. Genet. 27, 430–439 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell 20, 858–873 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jorgensen, A. et al. Nodal signaling regulates germ cell development and establishment of seminiferous cords in the human fetal testis. Cell Rep. 25, 1924–1937 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Le Rolle, M. et al. Arrest of WNT/beta-catenin signaling enables the transition from pluripotent to differentiated germ cells in mouse ovaries. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2023376118 (2021).

  • Lin, Y., Gill, M. E., Koubova, J. & Page, D. C. Germ cell-intrinsic and -extrinsic factors govern meiotic initiation in mouse embryos. Science 322, 1685–1687 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, D. et al. In vitro differentiation of human embryonic stem cells into ovarian follicle-like cells. Nat. Commun. 8, 15680 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, J. et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell 28, 764–778 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vallot, C. et al. XACT noncoding RNA competes with XIST in the control of X chromosome activity during human early development. Cell Stem Cell 20, 102–111 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vallot, C. et al. XACT, a long noncoding transcript coating the active X chromosome in human pluripotent cells. Nat. Genet. 45, 239–241 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tukiainen, T. et al. Landscape of X chromosome inactivation across human tissues. Nature 550, 244–248 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y. T. et al. Chromosome X-encoded cancer/testis antigens show distinctive expression patterns in developing gonads and in testicular seminoma. Hum. Reprod. 26, 3232–3243 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, W. W. et al. A unique gene regulatory network resets the human germline epigenome for development. Cell 161, 1453–1467 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fukuda, K. et al. Potential role of KRAB-ZFP binding and transcriptional states on DNA methylation of retroelements in human male germ cells. eLife https://doi.org/10.7554/eLife.76822 (2022).

  • Zhao, L. Y. et al. Low XIST expression in Sertoli cells of Klinefelter syndrome patients causes high susceptibility of these cells to an extra X chromosome. Asian J. Androl. 25, 662–673 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, R. et al. Dissecting human gonadal cell lineage specification and sex determination using a single-cell RNA-seq approach. Genom. Proteom. Bioinform. 20, 223–245 (2022).

    Article 
    CAS 

    Google Scholar 

  • McKinnell, C. et al. Perinatal germ cell development and differentiation in the male marmoset (Callithrix jacchus): similarities with the human and differences from the rat. Hum. Reprod. 28, 886–896 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Piprek, R. P., Kolasa, M., Podkowa, D., Kloc, M. & Kubiak, J. Z. N-cadherin is critical for the survival of germ cells, the formation of steroidogenic cells, and the architecture of developing mouse gonads. Cells https://doi.org/10.3390/cells8121610 (2019).

  • Xu, J. et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 6, e1818 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yuan, Y. et al. In vitro testicular organogenesis from human fetal gonads produces fertilization-competent spermatids. Cell Res. 30, 244–255 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiong, J. et al. Cooperative action between SALL4A and TET proteins in stepwise oxidation of 5-methylcytosine. Mol. Cell 64, 913–925 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeng, Y. et al. Lin28A binds active promoters and recruits Tet1 to regulate gene expression. Mol. Cell 61, 153–160 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zong, C., Lu, S., Chapman, A. R. & Xie, X. S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, F. et al. Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777–1792 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165, 1012–1026 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knouse, K. A., Wu, J., Whittaker, C. A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl Acad. Sci. USA 111, 13409–13414 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brouard, J. S., Schenkel, F., Marete, A. & Bissonnette, N. The GATK joint genotyping workflow is appropriate for calling variants in RNA-seq experiments. J. Anim. Sci. Biotechnol. 10, 44 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, P. et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50, 12–19 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamada, H. et al. Allele-specific methylome and transcriptome analysis reveals widespread imprinting in the human placenta. Am. J. Hum. Genet. 99, 1045–1058 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, H. G. et al. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 627, 865–872 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xue, R. et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 612, 141–147 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, S., Plikus, M. V. & Nie, Q. CellChat for systematic analysis of cell–cell communication from single-cell transcriptomics. Nat. Protoc. https://doi.org/10.1038/s41596-024-01045-4 (2024).

  • Yang, M. et al. Spatiotemporal insight into early pregnancy governed by immune-featured stromal cells. Cell 186, 4271–4288 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Shaking up earthquake safety in Nepal with a folk song
    Shaking up earthquake safety in Nepal with a folk song
    Automated real-world data integration improves cancer outcome prediction - Nature
    Automated real-world data integration improves cancer outcome prediction – Nature
    A spider’s windproof web
    A spider’s windproof web
    This AI system makes human tutors better at teaching children math
    This AI system makes human tutors better at teaching children math
    The Nature Podcast highlights of 2024
    The Nature Podcast highlights of 2024
    The AI tool that can interpret any spreadsheet instantly
    The AI tool that can interpret any spreadsheet instantly
    Headline Central | © 2024 | News