Hydrogen escaping from a pair of exoplanets smaller than Neptune – Nature

Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).
Google Scholar
Dong, S. & Zhu, Z. Fast rise of “Neptune-size” planets (4–8 R⊕) from P ∼ 10 to ∼250 days—statistics of Kepler planet candidates up to ∼0.75 AU. Astrophys. J. 778, 53 (2013).
Google Scholar
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Google Scholar
Kunimoto, M., Winn, J., Ricker, G. R. & Vanderspek, R. K. Predicting the exoplanet yield of the TESS Prime and extended missions through years 1–7. Astrophys. J. 163, 290 (2022).
Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).
Google Scholar
Lopez, E. D. & Fortney, J. J. The role of core mass in controlling evaporation: the Kepler radius distribution and the Kepler-36 density dichotomy. Astrophys. J. 776, 2 (2013).
Google Scholar
Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).
Google Scholar
Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).
Google Scholar
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).
Google Scholar
Lee, E. J. & Connors, N. J. Primordial radius gap and potentially broad core mass distributions of super-Earths and sub-Neptunes. Astrophys. J. 908, 32 (2021).
Google Scholar
Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).
Google Scholar
Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).
Google Scholar
Rogers, J. G., Schlichting, H. E. & Owen, J. E. Conclusive evidence for a population of water worlds around M dwarfs remains elusive. Astrophys. J. Lett. 947, 19 (2023).
Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).
Lecavelier des Etangs, A. A diagram to determine the evaporation status of extrasolar planets. Astron. Astrophys. 461, 1185–1193 (2007).
Google Scholar
Owen, J. E. & Jackson, A. P. Planetary evaporation by UV and X-ray radiation: basic hydrodynamics. Mon. Not. R. Astron. Soc. 425, 2931–2947 (2012).
Google Scholar
Luque, R. et al. A planetary system with two transiting mini-Neptunes near the radius valley transition around the bright M dwarf TOI-776. Astron. Astrophys. 645, A41 (2021).
Google Scholar
Cloutier, R. & Menou, K. Evolution of the radius valley around low-mass stars from Kepler and K2. Astron. J. 159, 211 (2020).
Google Scholar
Angus, R. et al. Exploring the evolution of stellar rotation using galactic kinematics. Astron. J. 160, 90 (2020).
Google Scholar
Engle, S. G. & Guinan, E. F. Living with a red dwarf: the rotation-age relationship of M dwarfs. Astrophys. J. Lett. 954, 50 (2023).
Lu, Y., Angus, R., Foreman-Mackey, D. & Hattori, S. In this day and age: an empirical gyrochronology relation for partially and fully convective single field stars. Astron. J. 167, 159 (2024).
Schreyer, E., Owen, J. E., Loyd, R. O. P. & Murray-Clay, R. Using Lyman-α transits to constrain models of atmospheric escape. Mon. Not. R. Astron. Soc. 533, 3296–3311 (2024).
Owen, J. E. & Adams, F. C. Effects of magnetic fields on the location of the evaporation valley for low-mass exoplanets. Mon. Not. R. Astron. Soc. 490, 15–20 (2019).
Google Scholar
Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003).
Google Scholar
Bourrier, V. & Lecavelier des Etangs, A. 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. Astron. Astrophys. 557, A124 (2013).
Google Scholar
Kislyakova, K. G. et al. Transit Lyman-α signatures of terrestrial planets in the habitable zones of M dwarfs. Astron. Astrophys. 623, A131 (2019).
Google Scholar
Bourrier, V. et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b. Astron. Astrophys. 620, A147 (2018).
Google Scholar
Zhang, M. et al. Detection of ongoing mass loss from HD 63433c, a young mini-Neptune. Astron. J 163, 68 (2022).
Google Scholar
Zhang, M. et al. Detection of atmospheric escape from four young mini-Neptunes. Astron. J 165, 62 (2023).
Google Scholar
Zhang, M., Dai, F., Bean, J. L., Knutson, H. A. & Rescigno, F. Outflowing helium from a mature mini-Neptune. Astrophys. J. Lett. 953, 25 (2023).
Zahnle, K. J. & Kasting, J. F. Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986).
Google Scholar
Hunten, D. M., Pepin, R. O. & Walker, J. C. G. Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987).
Google Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N. Atmospheric escape from hot Jupiters. Astrophys. J. 693, 23–42 (2009).
Google Scholar
García Muñoz, A. et al. A heavy molecular weight atmosphere for the super-Earth π Men c. Astrophys. J. 907, L36 (2021).
Google Scholar
Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. 974, L10 (2024).
Google Scholar
Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).
Google Scholar
Rogers, J. G., Gupta, A., Owen, J. E. & Schlichting, H. E. Photoevaporation versus core-powered mass-loss: model comparison with the 3D radius gap. Mon. Not. R. Astron. Soc. 508, 5886 (2021).
Google Scholar
Sohn, T. S. STIS Data Handbook v.7 (STScI, 2019).
Medallon, S. & Welty, D. STIS Instrument Handbook for Cycle 31 v.22.0 (STScI, 2023).
Bohlin, R. & Hartig, G. Clear aperture fractional transmission for point sources. STIS Instrum. Sci. Rep. 98, 20 (1998).
Google Scholar
Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436b. Nature 522, 459–461 (2015).
Google Scholar
Lecavelier des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-α. Astron. Astrophys. 514, A72 (2010).
Google Scholar
Kulow, J. R., France, K., Linsky, J. & Parke Loyd, R. O. LYα transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).
Google Scholar
Ben-Jaffel, L. et al. Signatures of strong magnetization and a metal-poor atmosphere for a Neptune-sized exoplanet. Nat Astron 6, 141–153 (2022).
Google Scholar
Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. 377, L74–L78 (2007).
Google Scholar
Wilson, D. J. et al. Testing Lyα emission-line reconstruction routines at multiple velocities in one system. Astrophys. J. 936, 189 (2022).
Google Scholar
Karamanis, M., Beutler, F. & Peacock, J. A. zeus: a PYTHON implementation of ensemble slice sampling for efficient Bayesian parameter inference. Mon. Not. R. Astron. Soc. 508, 3589–3603 (2021).
Google Scholar
Karamanis, M. & Beutler, F. Ensemble slice sampling. Stat. Comput. 31, 61 (2021).
Google Scholar
Linsky, J. L., Fontenla, J. & France, K. The intrinsic extreme ultraviolet fluxes of F5 V to M5 V stars. Astrophys. J. 780, 61 (2014).
Google Scholar
Duvvuri, G. M. et al. Reconstructing the extreme ultraviolet emission of cool dwarfs using differential emission measure polynomials. Astrophys. J. 913, 40 (2021).
Google Scholar
Feinstein, A. D. et al. AU Microscopii in the far-UV: observations in quiescence, during flares, and implications for AU Mic b and c. Astron. J 164, 110 (2022).
Google Scholar
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C. & Young, P. R. CHIANTI—an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 125, 149–173 (1997).
Google Scholar
del Zanna, G. & Young, P. R. Atomic data for plasma spectroscopy: the CHIANTI database, improvements and challenges. Atoms 8, 46 (2020).
Google Scholar
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Google Scholar
Peacock, S. et al. Predicting the extreme ultraviolet radiation environment of exoplanets around low-mass stars: GJ 832, GJ 176, and GJ 436. Astrophys. J. 886, 77 (2019).
Google Scholar
Peacock, S. et al. HAZMAT VI: the evolution of extreme ultraviolet radiation emitted from early M stars. Astrophys. J. 895, 5 (2020).
Google Scholar
Tilipman, D., Vieytes, M., Linsky, J. L., Buccino, A. P. & France, K. Semiempirical modeling of the atmospheres of the M dwarf exoplanet hosts GJ 832 and GJ 581. Astrophys. J. 909, 61 (2021).
Google Scholar
Johnstone, C. P., Bartel, M. & Güdel, M. The active lives of stars: a complete description of the rotation and XUV evolution of F, G, K, and M dwarfs. Astron. Astrophys. 649, A96 (2021).
Google Scholar
Drake, J. J. et al. NExtUP: the normal-incidence extreme ultraviolet photometer. Proc. SPIE 11821, 1182108 (2021).
France, K. et al. Extreme-ultraviolet stellar characterization for atmospheric physics and evolution mission: motivation and overview. J. Astron. Telesc. Instrum. Syst. 8, 014006 (2022).
Google Scholar
Llama, J. & Shkolnik, E. L. Transiting the Sun. II. The impact of stellar activity on Lyα transits. Astrophys. J. 817, 81 (2016).
Google Scholar
Linssen, D. & Oklopčić, A. Expanding the inventory of spectral lines used to trace atmospheric escape in exoplanets. Astron. Astrophys. 675, 193 (2023).
Avrett, E. H. & Loeser, R. Models of the solar chromosphere and transition region from SUMER and HRTS observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175, 229–276 (2008).
Google Scholar
Owen, J. E. & Adams, F. C. Magnetically controlled mass-loss from extrasolar planets in close orbits. Mon. Not. R. Astron. Soc. 444, 3761–3779 (2014).
Google Scholar
Bisikalo, D. et al. Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. Astrophys. J. 764, 19 (2013).
Google Scholar
Matsakos, T., Uribe, A. & Königl, A. Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. Astron. Astrophys. 578, A6 (2015).
Google Scholar
Carroll-Nellenback, J. et al. Hot planetary winds near a star: dynamics, wind-wind interactions, and observational signatures. Mon. Not. R. Astron. Soc. 466, 2458–2473 (2017).
Google Scholar
Khodachenko, M. L. et al. Global 3D hydrodynamic modeling of in-transit Lyα absorption of GJ 436b. Astrophys. J. 885, 67 (2019).
Google Scholar
McCann, J., Murray-Clay, R. A., Kratter, K. & Krumholz, M. R. Morphology of hydrodynamic winds: a study of planetary winds in stellar environments. Astrophys. J. 873, 89 (2019).
Google Scholar
Debrecht, A. et al. Effects of radiation pressure on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 493, 1292–1305 (2020).
Google Scholar
Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C. & Hazra, G. Effects of the stellar wind on the Ly α transit of close-in planets. Mon. Not. R. Astron. Soc. 500, 3382–3393 (2021).
Google Scholar
Hazra, G., Vidotto, A. A., Carolan, S., Villarreal D’Angelo, C. & Manchester, W. The impact of coronal mass ejections and flares on the atmosphere of the hot Jupiter HD189733b. Mon. Not. R. Astron. Soc. 509, 5858–5871 (2022).
Google Scholar
MacLeod, M. & Oklopčić, A. Stellar wind confinement of evaporating exoplanet atmospheres and its signatures in 1083 nm observations. Astrophys. J. 926, 226 (2022).
Google Scholar
Salz, M., Schneider, P. C., Czesla, S. & Schmitt, J. H. M. M. Energy-limited escape revised: the transition from strong planetary winds to stable thermospheres. Astron. Astrophys. 585, L2 (2016).
Google Scholar
Lavie, B. et al. The long egress of GJ 436b’s giant exosphere. Astron. Astrophys. 605, L7 (2017).
Google Scholar
Tremblin, P. & Chiang, E. Colliding planetary and stellar winds: charge exchange and transit spectroscopy in neutral hydrogen. Mon. Not. R. Astron. Soc. 428, 2565–2576 (2013).
Google Scholar
Debrecht, A. et al. Effects of charge exchange on the evaporative wind of HD 209458b. Mon. Not. R. Astron. Soc. 517, 1724–1736 (2022).
Google Scholar
Bourrier, V., Lecavelier des Etangs, A., Ehrenreich, D., Tanaka, Y. A. & Vidotto, A. A. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. Astron. Astrophys. 591, A121 (2016).
Google Scholar
Villarreal D’Angelo, C., Vidotto, A. A., Esquivel, A., Hazra, G. & Youngblood, A. GJ 436b and the stellar wind interaction: simulations constraints using Ly α and H α transits. Mon. Not. R. Astron. Soc. 501, 4383–4395 (2021).
Google Scholar
Mason, E. A. & Marrero, T. R. in Advances in Atomic and Molecular Physics Vol. 6 (eds Bates, D. R. & Esterman, I.) 155–232 (Elsevier, 1970).
Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).
Google Scholar
Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).
Google Scholar
Valencia, D., Ikoma, M., Guillot, T. & Nettelmann, N. Composition and fate of short-period super-Earths: the case of CoRoT-7b. Astron. Astrophys. 516, A20 (2010).
Google Scholar
Loyd, R. O. Parke. Hydrogen escaping from a pair of exoplanets smaller than Neptune: data analysis code. Zenodo https://doi.org/10.5281/zenodo.13976674 (2024).
Petigura, E. A. et al. The California-Kepler Survey. X. The radius gap as a function of stellar mass, metallicity, and age. Astron. J. 163, 179 (2022).
Google Scholar
Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).
Google Scholar
Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
Google Scholar
Woods, T. N. et al. Solar EUV Experiment (SEE): mission overview and first results. J. Geophys. Res. Space Phys. 110, A01312 (2005).
Google Scholar
Youngblood, A. et al. Intrinsic Lyα profiles of high-velocity G, K, and M dwarfs. Astrophys. J. 926, 129 (2022).
Google Scholar
Redfield, S. & Linsky, J. L. The structure of the local interstellar medium. IV. Dynamics, morphology, physical properties, and implications of cloud-cloud interactions. Astrophys. J. 673, 283–314 (2008).
Google Scholar
Linsky, J. L. et al. What is the total deuterium abundance in the local galactic disk? Astrophys. J. 647, 1106–1124 (2006).
Google Scholar