Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia – Nature
Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J. & Weishampel, J. F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl Acad. Sci. USA 109, 12916–12921 (2012).
Google Scholar
Prümers, H., Betancourt, C. J., Iriarte, J., Robinson, M. & Schaich, M. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022).
Google Scholar
Casana, J. et al. Exploring archaeological landscapes using drone-acquired lidar: case studies from Hawai’i, Colorado, and New Hampshire, USA. J. Archaeol. Sci. Rep. 39, 103133 (2021).
Frachetti, M. D. & Maksudov, F. The landscape of ancient mobile pastoralism in the highlands of southeastern Uzbekistan, 2000 BC – 1400 AD. J. Field Archaeol. 39, 195–212 (2014).
Google Scholar
Maksudov, F. et al. in Urban Cultures in Central Asia from the Bronze Age to the Karakhanids (eds Baumer, C. & Novák, M.) 283–305 (Harrassowitz Verlag, 2019).
Frachetti, M. D., Smith, C. E., Traub, C. & Williams, T. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature 543, 193–198 (2017).
Google Scholar
Cowgill, G. L. Origins and development of urbanism: archaeological perspectives. Annu. Rev. Anthropol. 33, 525–549 (2004).
Google Scholar
Smith, M. L. The archaeology of urban landscapes. Annu. Rev. Anthropol. 43, 307–323 (2014).
Google Scholar
Smith, M. Urban Life in the Distant Past: The Prehistory of Energized Crowding (Cambridge Univ. Press, 2023).
Fletcher, R. Urban labels and settlement trajectories. J. Urban Archaeol. 1, 31–48 (2020).
Google Scholar
Nebbia, M. Early Cities or Large Villages? Settlement Dynamics in the Trypillia Group, Ukraine. Doctoral thesis, Durham Univ. (2017).
Chapman, J., Gaydarska, B. & Nebbia, M. The origins of Trypillia megasites. Front. Digit. Humanit. 6, 10 (2019).
White, K. & Fletcher, R. Anomalous giants: form, operation, differences, and outcomes. J. Urban Archaeol. 7, 275–311 (2023).
Google Scholar
Bellina, B. Maritime Silk Roads’ ornament industries: socio-political practices and cultural transfers in the South China Sea. Camb. Archaeol. J. 24, 345–377 (2014).
Google Scholar
Fletcher, R. Trajectories to low-density settlements past and present: paradox and outcomes. Front. Digit. Humanit. 6, 14 (2019).
Google Scholar
Miksic, J. Khao Sam Kaeo: an early port-city between the Indian Ocean and the South China Sea edited by Berenice Bellina. J. Malays. Branch R. Asiat. Soc. 91, 155–159 (2018).
Google Scholar
Rogers, J. D., Ulambayar, E. & Gallon, M. Urban centres and the emergence of empires in Eastern Inner Asia. Antiquity 79, 801–818 (2005).
Google Scholar
Honeychurch, W. & Amartuvshin, C. Hinterlands, urban centers, and mobile settings: the ‘New’ Old World archaeology from the Eurasian Steppe. Asian Perspect. 46, 36–64 (2007).
Google Scholar
Hammer, E. Multi-centric, marsh-based urbanism at the early Mesopotamian city of Lagash (Tell al-Hiba, Iraq). J. Anthropol. Archaeol. 68, 101458 (2022).
Google Scholar
Evans, D. H. et al. Uncovering archaeological landscapes at Angkor using lidar. Proc. Natl Acad. Sci. USA 110, 12595–12600 (2013).
Google Scholar
Hare, T., Masson, M. & Russell, B. High-density LiDAR mapping of the ancient city of Mayapán. Remote Sens. 6, 9064–9085 (2014).
Google Scholar
Reichert, S., Erdene-Ochir, N.-O., Linzen, S., Munkhbayar, Lkh & Bemmann, J. Overlooked—enigmatic—underrated: the city Khar Khul Khaany Balgas in the heartland of the Mongol world empire. J. Field Archaeol. 47, 397–420 (2022).
Google Scholar
Piezonka, H. et al. Lost cities in the Steppe: investigating an enigmatic site type in early modern Mongolia. Antiquity 97, e12 (2023).
Google Scholar
McIntosh, R. J. Ancient Middle Niger: Urbanism and the Self-Organizing Landscape (Cambridge Univ. Press, 2005).
Fletcher, R. & Evans, D. in Old Myths and New Approaches (ed. Haendel, A.) 42–62 (Monash Univ. Publishing, 2012).
Flad, R. K. & Chen, P. Ancient Central China (Cambridge Univ. Press, 2013).
Canuto, M. A. & Auld-Thomas, L. Taking the high ground: a model for lowland Maya settlement patterns. J. Anthropol. Archaeol. 64, 101349 (2021).
Google Scholar
Tremblay, J. C. & Ainslie, P. N. Global and country-level estimates of human population at high altitude. Proc. Natl Acad. Sci. USA 118, e2102463118 (2021).
Google Scholar
Aldenderfer, M. Modelling plateau peoples: the early human use of the world’s high plateaux. World Archaeol. 38, 357–370 (2006).
Google Scholar
Janusek, J. W. Incipient urbanism at the Early Andean center of Khonkho Wankane, Bolivia. J. Field Archaeol. 40, 127–143 (2015).
Google Scholar
Leadbetter, M. P. & Sastrawan, W. J. Do mountains kill states? Exploring the diversity of Southeast Asian highland communities. J. Glob. Hist. 19, 195–220 (2024).
Körner, C. in Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 23–51 (Springer International Publishing, 2021).
Aldenderfer, M. S. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 131–143 (Springer New York, 2008).
VanValkenburgh, P. et al. Lasers without lost cities: using drone Lidar to capture architectural complexity at Kuelap, Amazonas, Peru. J. Field Archaeol. 45, S75–S88 (2020).
Google Scholar
Risbøl, O. & Gustavsen, L. LiDAR from drones employed for mapping archaeology–potential, benefits and challenges. Archaeol. Prospect. 25, 329–338 (2018).
Google Scholar
Li, Z. New opportunities for archaeological research in the Greater Ghingan Range, China: application of UAV LiDAR in the archaeological survey of the Shenshan Mountain. J. Archaeol. Sci. Rep. 51, 104182 (2023).
Google Scholar
Evans, D. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. J. Archaeol. Sci. 74, 164–175 (2016).
Google Scholar
Masini, N. et al. Medieval archaeology under the canopy with LiDAR. The (re)discovery of a medieval fortified settlement in southern Italy. Remote Sens. 10, 1598 (2018).
Google Scholar
Inomata, T. et al. Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne lidar. Nat. Hum. Behav. 5, 1487–1501 (2021).
Google Scholar
Casana, J. et al. Multi-sensor drone survey of ancestral agricultural landscapes at Picuris Pueblo, New Mexico. J. Archaeol. Sci. 157, 105837 (2023).
Google Scholar
Henry, E. R., Shields, C. R. & Kidder, T. R. Mapping the Adena-Hopewell landscape in the Middle Ohio Valley, USA: multi-scalar approaches to LiDAR-derived imagery from central Kentucky. J. Archaeol. Method Theory 26, 1513–1555 (2019).
Google Scholar
Yoshizawa, S., Belyaev, A. & Seidel, H.-P. Fast and robust detection of crest lines on meshes. In Proc. 2005 ACM Symposium on Solid and Physical Modeling (eds Yoshizawa, S. et al.) 227–232 (Association for Computing Machinery, 2005).
Mantellini, S. & Berdimuadov, A. Archaeological explorations in the Sogdian fortress of Kafir Kala. Anc. Civiliz. Scythia Sib. 11, 107–132 (2005).
Google Scholar
Lurje, P. B. in Urban Cultures of Central Asia from the Bronze Age to the Karakhanids (eds Baumer, C. & Novák, M.) 333–348 (Harrassowitz Verlag, 2019).
Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20, 113–125 (1998).
Google Scholar
Mayr, A., Bremer, M., Rutzinger, M. & Geitner, C. Unmanned aerial vehicle laser scanning for erosion monitoring in alpine grassland. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 405–412 (2019).
Google Scholar
Resop, J. P., Lehmann, L. & Hession, W. C. Drone laser scanning for modeling riverscape topography and vegetation: comparison with traditional aerial lidar. Drones 3, 35 (2019).
Google Scholar
Williams, P. R., Londono, A. C. & Hart, M. in New Geospatial Approaches to the Anthropological Sciences (eds Anemone, R. L. & Conroy, G. C.) Ch. 10 (SAR, 2018).
Oczipka, M. et al. Small drones for geo-archaeology in the steppes: locating and documenting the archaeological heritage of the Orkhon Valley in Mongolia. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX Vol. 7478, 747806 (SPIE, 2009).
Block-Berlitz, M. et al. Area-optimized, rapid UAV-borne recording of medieval heritage in Central Asia. J. Field Archaeol. 47, 90–104 (2022).
Google Scholar
Baipakov, К. М. Drevnjaja i srednevekovaja urbanizacija Kazahstana (po materialam issledovanij Juzhno-Kazahstanskoj kompleksnoj arheologicheskoj jekspedicii), Kniga I. Urbanizacija v jepohu bronzy – rannem srednevekov’e [Russian] (Inst. Archaeology MON RK, Almaty, 2012).
Rapin, C. in Zwischen Ost und West. Neue Forschungen zum antiken Zentralasien (eds Lindström, G. et al.) Vol. 14 43–82 (Philipp von Zabern, 2013).
Grenet, F. in The History and Culture of Iran and Central Asia: From the Pre-Islamic to the Islamic Period (eds Tor, D. G. & Inaba, M.) 11–40 (University of Notre Dame Press, 2022).
Mantellini, S., Di Cugno, S., Dimartino, R. & Berdimuradov, A. E. Change and continuity in the Samarkand oasis: evidence for the Islamic conquest from the citadel of Kafir Kala. J. Inn. Asian Art Archaeol. 7, 227–253 (2016).
Sverchkov, L. M. A history of research on ancient mining in Uzbekistan. Archaologische Mitteilungen Aus Iran Turan 41, 141–164 (2009).
Spengler, R. N. et al. Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak. PLoS ONE 13, e0201409 (2018).
Google Scholar
Bullion, E., Maksudov, F., Henry, E. R., Merkle, A. & Frachetti, M. Community practice and religion at an Early Islamic cemetery in highland Central Asia. Antiquity 96, 628–645 (2022).
Google Scholar
Besl, P. J. & McKay, N. D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures (ed. Schenker, P. S.) Vol. 1611, 586–606 (SPIE, 1992).
Kazhdan, M. & Hoppe, H. Screened Poisson surface reconstruction. ACM Trans. Graph. 32, 3 (2013).
Google Scholar
Cignoni, P. et al. Meshlab: an open-source mesh processing tool. Computing 1, 129–136 (2008).
Story, M. & Congalton, R. G. Accuracy assessment: a user’s perspective. Photogramm. Eng. Remote Sens. 52, 397–399 (1986).
Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S. & Alamri, A. Deep learning approaches applied to remote sensing datasets for road extraction: a state-of-the-art review. Remote Sens. 12, 1444 (2020).
Google Scholar
Dong, R., Pan, X. & Li, F. DenseU-net-based semantic segmentation of small objects in urban remote sensing images. IEEE Access 7, 65347–65356 (2019).
Google Scholar
Monna, F. et al. Machine learning for rapid mapping of archaeological structures made of dry stones–example of burial monuments from the Khirgisuur culture, Mongolia. J. Cult. Herit. 43, 118–128 (2020).
Google Scholar
Du, X. et al. Isometric energies for recovering injectivity in constrained mapping. In SIGGRAPH Asia 2022 Conference Papers 1–9 (ACM, 2022).