Local probe of bulk and edge states in a fractional Chern insulator – Nature
Barber, M. E., Ma, E. Y. & Shen, Z.-X. Microwave impedance microscopy and its application to quantum materials. Nat. Rev. Phys. 4, 61–74 (2022).
Google Scholar
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Google Scholar
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395 (1983).
Google Scholar
Halperin, B. I. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett. 52, 1583 (1984).
Google Scholar
Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722 (1984).
Google Scholar
Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).
Google Scholar
Goldman, V. & Su, B. Resonant tunneling in the quantum Hall regime: measurement of fractional charge. Science 267, 1010–1012 (1995).
Google Scholar
Martin, J. et al. Localization of fractionally charged quasi-particles. Science 305, 980–983 (2004).
Google Scholar
Radu, I. P. et al. Quasi-particle properties from tunneling in the v = 5/2 fractional quantum Hall state. Science 320, 899–902 (2008).
Google Scholar
De-Picciotto, R. et al. Direct observation of a fractional charge. Physica B 249, 395–400 (1998).
Google Scholar
Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).
Google Scholar
Pascher, N. et al. Imaging the conductance of integer and fractional quantum Hall edge states. Phys. Rev. X 4, 011014 (2014).
Chang, A. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 75, 1449 (2003).
Google Scholar
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008).
Google Scholar
Ashoori, R., Stormer, H., Pfeiffer, L., Baldwin, K. & West, K. Edge magnetoplasmons in the time domain. Phys. Rev. B 45, 3894 (1992).
Google Scholar
Stuhl, B., Lu, H.-I., Aycock, L., Genkina, D. & Spielman, I. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).
Google Scholar
Yao, R. et al. Observation of chiral edge transport in a rapidly rotating quantum gas. Nature https://doi.org/10.1038/s41567-024-02617-7 (2024).
Google Scholar
Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).
Google Scholar
Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).
Google Scholar
Lai, K. et al. Imaging of Coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107, 176809 (2011).
Google Scholar
Cui, Y.-T. et al. Unconventional correlation between quantum Hall transport quantization and bulk state filling in gated graphene devices. Phys. Rev. Lett. 117, 186601 (2016).
Google Scholar
Yacoby, A., Hess, H., Fulton, T., Pfeiffer, L. & West, K. Electrical imaging of the quantum Hall state. Solid State Commun. 111, 1–13 (1999).
Google Scholar
Suddards, M., Baumgartner, A., Henini, M. & Mellor, C. J. Scanning capacitance imaging of compressible and incompressible quantum Hall effect edge strips. New J. Phys. 14, 083015 (2012).
Google Scholar
Shi, Y. et al. Imaging quantum spin Hall edges in monolayer WTe2. Sci. Adv. 5, eaat8799 (2019).
Google Scholar
Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. 116, 14511–14515 (2019).
Google Scholar
Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).
Google Scholar
Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).
Google Scholar
Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).
Google Scholar
Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).
Google Scholar
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
Google Scholar
Uri, A. et al. Mapping the twist-angle disorder and Landau levels in magic-angle graphene. Nature 581, 47–52 (2020).
Google Scholar
Chu, Z. et al. Unveiling defect-mediated carrier dynamics in monolayer semiconductors by spatiotemporal microwave imaging. Proc. Natl Acad. Sci. 117, 13908–13913 (2020).
Google Scholar
Cui, Y.-T., Ma, E. Y. & Shen, Z.-X. Quartz tuning fork based microwave impedance microscopy. Rev. Sci. Instrum. 87, 063711 (2016).
Google Scholar
Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).
Google Scholar
Ji, Z. et al. Harnessing excitons at the nanoscale–photoelectrical platform for quantitative sensing and imaging. Preprint at https://arxiv.org/abs/2311.04211 (2023).
Dong, J., Wang, J., Ledwith, P. J., Vishwanath, A. & Parker, D. E. Composite Fermi liquid at zero magnetic field in twisted MoTe2. Phys. Rev. Lett. 131, 136502 (2023).
Google Scholar
Goldman, H., Reddy, A. P., Paul, N. & Fu, L. Zero-field composite Fermi liquid in twisted semiconductor bilayers. Phys. Rev. Lett. 131, 136501 (2023).
Google Scholar
Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).
Google Scholar
Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).
Google Scholar
Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).
Google Scholar
Wang, T. et al. Probing the edge states of Chern insulators using microwave impedance microscopy. Phys. Rev. B 108, 235432 (2023).
Google Scholar
Lee, D.-H., Wang, Z. & Kivelson, S. Quantum percolation and plateau transitions in the quantum Hall effect. Phys. Rev. Lett. 70, 4130 (1993).
Google Scholar
Wen, X.-G. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys. B 6, 1711–1762 (1992).
Google Scholar
Zülicke, U., MacDonald, A. & Johnson, M. Observability of counterpropagating modes at fractional quantum Hall edges. Phys. Rev. B 58, 13778 (1998).
Google Scholar
Sabo, R. et al. Edge reconstruction in fractional quantum Hall states. Nat. Phys. 13, 491–496 (2017).
Google Scholar
Kane, C., Fisher, M. P. & Polchinski, J. Randomness at the edge: theory of quantum Hall transport at filling ν=2/3. Phys. Rev. Lett. 72, 4129 (1994).
Google Scholar
Redekop, E. et al. Direct magnetic imaging of fractional Chern insulators in twisted MoTe2 with a superconducting sensor. Preprint at https://arxiv.org/abs/2405.10269 (2024).
Dutta, B. et al. Distinguishing between non-abelian topological orders in a quantum Hall system. Science 375, 193–197 (2022).
Google Scholar
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).
Google Scholar
Meir, Y. Composite edge states in the ν=2/3 fractional quantum Hall regime. Phys. Rev. Lett. 72, 2624 (1994).
Google Scholar
Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Fabry-Pérot interferometry at the ν = 2/5 fractional quantum Hall state. Phys. Rev. X 13, 041012 (2023).
Google Scholar
Santos, L. H., Cano, J., Mulligan, M. & Hughes, T. L. Symmetry-protected topological interfaces and entanglement sequences. Phys. Rev. B 98, 075131 (2018).
Google Scholar
Crépel, V., Claussen, N., Estienne, B. & Regnault, N. Model states for a class of chiral topological order interfaces. Nat. Commun. 10, 1861 (2019).
Google Scholar
Crépel, V., Claussen, N., Regnault, N. & Estienne, B. Microscopic study of the Halperin–Laughlin interface through matrix product states. Nat. Commun. 10, 1860 (2019).
Google Scholar
Ji, Z. et al. Original data for “Local probe of bulk and edge states in a fractional Chern insulator”. Dryad https://doi.org/10.5061/dryad.9p8cz8ws0 (2024).