Multi-qubit gates and Schrödinger cat states in an optical clock – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS 
    MathSciNet 

    Google Scholar 

  • Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).

    ADS 
    CAS 

    Google Scholar 

  • Colombo, S., Pedrozo-Peñafiel, E. & Vuletić, V. Entanglement-enhanced optical atomic clocks. Appl. Phys. Lett. 121, 210502 (2022).

    CAS 

    Google Scholar 

  • Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Robinson, J. M. et al. Direct comparison of two spin-squeezed optical clock ensembles at the 10−17 level. Nat. Phys. 20, 208–213 (2024).

    CAS 

    Google Scholar 

  • Eckner, W. J. et al. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 621, 734–739 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS 

    Google Scholar 

  • Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Shaw, A. L. et al. Multi-ensemble metrology by programming local rotations with atom movements. Nat. Phys. 20, 195–201 (2024).

    CAS 

    Google Scholar 

  • Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Higgins, B. et al. Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements. New J. Phys. 11, 073023 (2009).

    ADS 

    Google Scholar 

  • Berry, D. W. et al. How to perform the most accurate possible phase measurements. Phys. Rev. A 80, 052114 (2009).

    ADS 

    Google Scholar 

  • Kessler, E. M. et al. Heisenberg-limited atom clocks based on entangled qubits. Phys. Rev. Lett. 112, 190403 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Komar, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    CAS 

    Google Scholar 

  • Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    ADS 
    MathSciNet 

    Google Scholar 

  • Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bongs, K. et al. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys. 1, 731–739 (2019).

    Google Scholar 

  • Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jandura, S. & Pupillo, G. Time-optimal two- and three-qubit gates for Rydberg atoms. Quantum 6, 712 (2022).

    Google Scholar 

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bloom, B. et al. An optical lattice clock with accuracy and stability at the 10−18 level. Nature 506, 71–75 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ushijima, I., Takamoto, M., Das, M., Ohkubo, T. & Katori, H. Cryogenic optical lattice clocks. Nat. Photon. 9, 185–189 (2015).

    ADS 
    CAS 

    Google Scholar 

  • McGrew, W. F. et al. Atomic clock performance enabling geodesy below the centimetre level. Nature 564, 87–90 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brewer, S. M. et al. 27Al+ quantum-logic clock with a systematic uncertainty below 10−18. Phys. Rev. Lett. 123, 033201 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, X. et al. Differential clock comparisons with a multiplexed optical lattice clock. Nature 602, 425–430 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schine, N., Young, A. W., Eckner, W. J., Martin, M. J. & Kaufman, A. M. Long-lived Bell states in an array of optical clock qubits. Nat. Phys. 18, 1067–1073 (2022).

    CAS 

    Google Scholar 

  • Scholl, P. et al. Erasure-cooling, control, and hyper-entanglement of motion in optical tweezers. Preprint at https://arxiv.org/abs/2311.15580 (2023).

  • Fröwis, F. & Dür, W. Measures of macroscopicity for quantum spin systems. New J. Phys. 14, 093039 (2012).

    ADS 

    Google Scholar 

  • Tóth, G. & Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A 47, 424006 (2014).

    ADS 
    MathSciNet 

    Google Scholar 

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quantum 2, 020343 (2021).

    ADS 

    Google Scholar 

  • Moses, S. A. et al. A race-track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).

    CAS 

    Google Scholar 

  • Bao, Z. et al. Schrödinger cats growing up to 60 qubits and dancing in a cat scar enforced discrete time crystal. Preprint at https://arxiv.org/abs/2401.08284 (2024).

  • Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nagata, T., Okamoto, R., O’Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Facon, A. et al. A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state. Nature 535, 262–265 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Urban, E. et al. Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009).

    CAS 

    Google Scholar 

  • Dudin, Y., Li, L., Bariani, F. & Kuzmich, A. Observation of coherent many-body Rabi oscillations. Nat. Phys. 8, 790–794 (2012).

    CAS 

    Google Scholar 

  • Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Leroux, I. D. et al. On-line estimation of local oscillator noise and optimisation of servo parameters in atomic clocks. Metrologia 54, 307 (2017).

    ADS 
    CAS 

    Google Scholar 

  • Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kaubruegger, R., Vasilyev, D. V., Schulte, M., Hammerer, K. & Zoller, P. Quantum variational optimization of Ramsey interferometry and atomic clocks. Phys. Rev. X 11, 041045 (2021).

    CAS 

    Google Scholar 

  • Marciniak, C. D. et al. Optimal metrology with programmable quantum sensors. Nature 603, 604–609 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nichol, B. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Norcia, M. A. et al. Iterative assembly of 171Yb atom arrays in cavity-enhanced optical lattices. PRX Quantum 5, 030316 (2024).

    Google Scholar 

  • Gyger, F. et al. Continuous operation of large-scale atom arrays in optical lattices. Phys. Rev. Res. 6, 033104 (2024).

    Google Scholar 

  • Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).

    CAS 

    Google Scholar 

  • Finkelstein, R. et al. Universal quantum operations and ancilla-based readout for tweezer clocks. Nature https://doi.org/10.1038/s41586-024-08005-8 (2024).

  • Kaubruegger, R. et al. Variational spin-squeezing algorithms on programmable quantum sensors. Phys. Rev. Lett. 123, 260505 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Colombe, Y., Slichter, D. H., Wilson, A. C., Leibfried, D. & Wineland, D. J. Single-mode optical fiber for high-power, low-loss UV transmission. Opt. Express 22, 19783–19793 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Young, A. W., Eckner, W. J., Schine, N., Childs, A. M. & Kaufman, A. M. Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice. Science 377, 885–889 (2022).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Dörscher, S. et al. Lattice-induced photon scattering in an optical lattice clock. Phys. Rev. A 97, 063419 (2018).

    ADS 

    Google Scholar 

  • Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

    CAS 

    Google Scholar 

  • Taichenachev, A. V. et al. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks. Phys. Rev. Lett. 96, 083001 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hein, M., Eisert, J. & Briegel, H. J. Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004).

    ADS 
    MathSciNet 

    Google Scholar 

  • Zeiher, J. et al. Microscopic characterization of scalable coherent Rydberg superatoms. Phys. Rev. X 5, 031015 (2015).

    Google Scholar 

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Löw, R. et al. An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B. 45, 113001 (2012).

    ADS 

    Google Scholar 

  • Derevianko, A., Kómár, P., Topcu, T., Kroeze, R. M. & Lukin, M. D. Effects of molecular resonances on Rydberg blockade. Phys. Rev. A 92, 063419 (2015).

    ADS 

    Google Scholar 

  • Young, A. W. et al. An atomic boson sampler. Nature 629, 311–316 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jandura, S., Thompson, J. D. & Pupillo, G. Optimizing Rydberg gates for logical-qubit performance. PRX Quantum 4, 020336 (2023).

    ADS 

    Google Scholar 

  • Demkowicz-Dobrzański, R., Jarzyna, M. & Kołodyński, J. in Progress in Optics (ed. Wolf, E.) 345–435 (Elsevier, 2015).

  • Rosenband, T. & Leibrandt, D. R. Exponential scaling of clock stability with atom number. Preprint at https://arxiv.org/abs/1303.6357 (2013).

  • Borregaard, J. & Sørensen, A. S. Efficient atomic clocks operated with several atomic ensembles. Phys. Rev. Lett. 111, 090802 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Macieszczak, K., Fraas, M. & Demkowicz-Dobrzański, R. Bayesian quantum frequency estimation in presence of collective dephasing. New J. Phys. 16, 113002 (2014).

    ADS 

    Google Scholar 

  • Jarzyna, M. & Demkowicz-Dobrzański, R. True precision limits in quantum metrology. New J. Phys. 17, 013010 (2015).

    ADS 

    Google Scholar 

  • Górecki, W., Demkowicz-Dobrzański, R., Wiseman, H. M. & Berry, D. W. π-corrected Heisenberg limit. Phys. Rev. Lett. 124, 030501 (2020).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Zheng, X., Dolde, J. & Kolkowitz, S. Reducing the instability of an optical lattice clock using multiple atomic ensembles. Phys. Rev. X 14, 011006 (2024).

    CAS 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    To boost science, the growing BRICS group must embrace inclusion and transparency
    To boost science, the growing BRICS group must embrace inclusion and transparency
    Audio long read: AI has dreamt up a blizzard of new proteins. Do any of them actually work?
    Audio long read: AI has dreamt up a blizzard of new proteins. Do any of them actually work?
    Human antibodies offer broad inhibition against variable proteins of the malaria parasite
    Human antibodies offer broad inhibition against variable proteins of the malaria parasite
    Why quantum theory is just like magic (and Einstein deserves more credit in this field than he gets)
    Why quantum theory is just like magic (and Einstein deserves more credit in this field than he gets)
    Neural crest lineage in the protovertebrate model Ciona - Nature
    Neural crest lineage in the protovertebrate model Ciona – Nature
    US academics: look after foreign students
    US academics: look after foreign students
    Headline Central | © 2024 | News