Neural crest lineage in the protovertebrate model Ciona – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Martik, M. L. & Bronner, M. E. Riding the crest to get a head: neural crest evolution in vertebrates. Nat. Rev. Neurosci. 22, 616–626 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Delsuc, F., Tsagkogeorga, G., Lartillot, N. & Philippe, H. Additional molecular support for the new chordate phylogeny. Genesis 46, 592–604 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527, 371–374 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papadogiannis, V. et al. Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature 605, 701–705 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schlosser, G. in Vertebrate Cranial Placodes Vol. 2, Ch. 6, section 3.1.2.2 (CRC, 2021).

  • Brandon, A. A., Almeida, D. & Powder, K. E. Neural crest cells as a source of microevolutionary variation. Semin. Cell Dev. Biol. 145, 42–51 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bruet, E., Amarante-Silva, D., Gorojankina, T. & Creuzet, S. The emerging roles of the cephalic neural crest in brain development and developmental encephalopathies. Int. J. Mol. Sci. 24, 9844 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Green, S. A. & Bronner, M. E. Gene duplications and the early evolution of neural crest development. Semin. Cell Dev. Biol. 24, 95–100 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tsuda, M., Sakurai, D. & Goda, M. Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J. Exp. Biol. 206, 1409–1417 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Chacha, P. P. et al. Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate. Proc. Natl Acad. Sci. USA 119, e2118817119 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature 560, 228–232 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haupaix, N. et al. Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS. Dev. Biol. 394, 170–180 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishida, H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121, 526–541 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Racioppi, C. et al. Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis. Nat. Commun. 5, 4830 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Nicol, D. & Meinertzhagen, I. A. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. I. The early lineages of the neural plate. Dev. Biol. 130, 721–736 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nishida, H. & Satoh, N. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev. Biol. 110, 440–454 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hudson, C. The central nervous system of ascidian larvae. Wiley Interdiscip. Rev. Dev. Biol. 5, 538–561 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Oonuma, K. & Kusakabe, T. G. The complete cell lineage and MAPK- and Otx-dependent specification of the dopaminergic cells in the Ciona brain. Development 148, dev198754 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oonuma, K. et al. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Dev. Biol. 420, 178–185 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, C. et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 571, 349–354 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Islam, A. F., Moly, P. K., Miyamoto, Y. & Kusakabe, T. G. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zoolog. Sci. 27, 84–90 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Lemaire, L. A., Cao, C., Yoon, P. H., Long, J. & Levine, M. The hypothalamus predates the origin of vertebrates. Sci. Adv. 7, eabf7452 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daruwala, R., Song, J., Koh, W. S., Rumsey, S. C. & Levine, M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 460, 480–484 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim. Biophys. Acta 1461, 1–9 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ryan, K., Lu, Z. & Meinertzhagen, I. A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 5, e16962 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crowther, R. J. & Whittaker, J. R. Structure of the caudal neural tube in an ascidian larva: vestiges of its possible evolutionary origin from a ciliated band. J. Neurobiol. 23, 280–292 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dilly, P. N. Studies on the receptors in the cerebral vesicle of the ascidian tadpole. 2. The ocellus. J. Cell Sci. s3-105, 13–20 (1964).

    Article 

    Google Scholar 

  • Konno, A. et al. Distribution and structural diversity of cilia in tadpole larvae of the ascidian Ciona intestinalis. Dev. Biol. 337, 42–62 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicol, D. & Meinertzhagen, I. A. Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J. Comp. Neurol. 309, 415–429 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chizhikov, V. V. & Millen, K. J. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J. Neurosci. 24, 5694–5703 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imai, K. S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Imai, K. S., Stolfi, A., Levine, M. & Satou, Y. Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136, 285–293 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ishida, T. & Satou, Y. Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat. Ecol. Evol. 8, 1154–1164 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Millonig, J. H., Millen, K. J. & Hatten, M. E. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mishima, Y., Lindgren, A. G., Chizhikov, V. V., Johnson, R. L. & Millen, K. J. Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J. Neurosci. 29, 11377–11384 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, E. & Levine, M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 139, 2351–2359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horie, T. et al. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469, 525–528 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Imai, J. H. & Meinertzhagen, I. A. Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J. Comp. Neurol. 501, 316–334 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delannet, M. & Duband, J. L. Transforming growth factor-beta control of cell-substratum adhesion during avian neural crest cell emigration in vitro. Development 116, 275–287 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tosney, K. W. The early migration of neural crest cells in the trunk region of the avian embryo: an electron microscopic study. Dev. Biol. 62, 317–333 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, R. & Trainor, P. A. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin. Cell Dev. Biol. 138, 54–67 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hozumi, A., Horie, T. & Sasakura, Y. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev. Dyn. 244, 1375–1393 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kimble, J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 87, 286–300 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nicol, D. & Meinertzhagen, I. A. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev. Biol. 130, 737–766 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takemoto, T. et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470, 394–398 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lukoseviciute, M., Mayes, S. & Sauka-Spengler, T. Neuromesodermal progenitor origin of trunk neural crest in vivo. Preprint at bioRxiv https://doi.org/10.1101/2021.02.10.430513 (2021).

  • McGrew, M. J. et al. Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135, 2289–2299 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodrigo Albors, A., Halley, P. A. & Storey, K. G. Lineage tracing of axial progenitors using Nkx1-2CreER(T2) mice defines their trunk and tail contributions. Development 145, dev164319 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wymeersch, F. J. et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. eLife 5, e10042 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotov, A. et al. A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages. Proc. Natl Acad. Sci. USA 121, e2311685121 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schock, E. N., York, J. R., Li, A. P., Tu, A. Y. & LaBonne, C. SoxB1 transcription factors are essential for initiating and maintaining neural plate border gene expression. Development 151, dev202693 (2024).

  • York, J. R. et al. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. Nat. Ecol. Evol. 8, 1680–1692 (2024).

  • Christiaen, L., Wagner, E., Shi, W. & Levine, M. Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harb. Protoc 2009, pdb prot5345 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Christiaen, L., Wagner, E., Shi, W. & Levine, M. Isolation of sea squirt (Ciona) gametes, fertilization, dechorionation, and development. Cold Spring Harb. Protoc. 2009, pdb prot5344 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Satou, Y., Kawashima, T., Shoguchi, E., Nakayama, A. & Satoh, N. An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zoolog. Sci. 22, 837–843 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Satou, Y. et al. A manually curated gene model set for an ascidian, Ciona robusta (Ciona intestinalis Type A). Zoolog. Sci. 39, 253–260 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349–1352 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J 418, 567–574 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akama-Garren, E. H. et al. A modular assembly platform for rapid generation of DNA constructs. Sci. Rep. 6, 16836 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hotta, K., Dauga, D. & Manni, L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci. Rep. 10, 17916 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Treen, N., Chavarria, E., Weaver, C. J., Brangwynne, C. P. & Levine, M. An FGF timer for zygotic genome activation. Genes Dev. 37, 80–85 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Long, J. et al. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc. Natl Acad. Sci. USA 120, e2309989120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dempsey, W. P., Fraser, S. E. & Pantazis, P. PhOTO zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration. PLoS ONE 7, e32888 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Osugi, T., Sasakura, Y. & Satake, H. The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci. Rep. 10, 1892 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kusakabe, T., Swalla, B. J., Satoh, N. & Jeffery, W. R. Mechanism of an evolutionary change in muscle cell differentiation in ascidians with different modes of development. Dev. Biol. 174, 379–392 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horie, T., Nakagawa, M., Sasakura, Y., Kusakabe, T. G. & Tsuda, M. Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic and GABAergic/glycinergic neurons. Zoolog. Sci. 27, 181–190 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horie, T., Kusakabe, T. & Tsuda, M. Glutamatergic networks in the Ciona intestinalis larva. J. Comp. Neurol. 508, 249–263 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gregory, C. & Veeman, M. 3D-printed microwell arrays for Ciona microinjection and timelapse imaging. PLoS ONE 8, e82307 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Negishi, T., McDougall, A. & Yasuo, H. Practical tips for imaging ascidian embryos. Dev. Growth Differ. 55, 446–453 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Satou, Y. et al. A nearly complete genome of Ciona intestinalis Type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the genus Ciona. Genome Biol. Evol. 11, 3144–3157 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemaire, L. A. Neural crest lineage in the proto-vertebrate model Ciona. Zenodo https://doi.org/10.5281/zenodo.13733541 (2024).

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Temporally distinct 3D multi-omic dynamics in the developing human brain - Nature
    Temporally distinct 3D multi-omic dynamics in the developing human brain – Nature
    Africa’s AI researchers are ready for takeoff
    Africa’s AI researchers are ready for takeoff
    ‘Rapture and beauty’: a writer’s portrait of the International Space Station
    ‘Rapture and beauty’: a writer’s portrait of the International Space Station
    How the extra X chromosome impairs the development of male fetal germ cells - Nature
    How the extra X chromosome impairs the development of male fetal germ cells – Nature
    Daily briefing: Squid-inspired pills squirt drugs straight into your gut
    Daily briefing: Squid-inspired pills squirt drugs straight into your gut
    Olfactory neurons selectively respond to related visual and verbal cues
    Olfactory neurons selectively respond to related visual and verbal cues
    Headline Central | © 2024 | News