Neural crest lineage in the protovertebrate model Ciona – Nature
Martik, M. L. & Bronner, M. E. Riding the crest to get a head: neural crest evolution in vertebrates. Nat. Rev. Neurosci. 22, 616–626 (2021).
Google Scholar
Bourlat, S. J. et al. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444, 85–88 (2006).
Google Scholar
Delsuc, F., Brinkmann, H., Chourrout, D. & Philippe, H. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439, 965–968 (2006).
Google Scholar
Delsuc, F., Tsagkogeorga, G., Lartillot, N. & Philippe, H. Additional molecular support for the new chordate phylogeny. Genesis 46, 592–604 (2008).
Google Scholar
Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012).
Google Scholar
Stolfi, A., Ryan, K., Meinertzhagen, I. A. & Christiaen, L. Migratory neuronal progenitors arise from the neural plate borders in tunicates. Nature 527, 371–374 (2015).
Google Scholar
Papadogiannis, V. et al. Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature 605, 701–705 (2022).
Google Scholar
Schlosser, G. in Vertebrate Cranial Placodes Vol. 2, Ch. 6, section 3.1.2.2 (CRC, 2021).
Brandon, A. A., Almeida, D. & Powder, K. E. Neural crest cells as a source of microevolutionary variation. Semin. Cell Dev. Biol. 145, 42–51 (2023).
Google Scholar
Bruet, E., Amarante-Silva, D., Gorojankina, T. & Creuzet, S. The emerging roles of the cephalic neural crest in brain development and developmental encephalopathies. Int. J. Mol. Sci. 24, 9844 (2023).
Google Scholar
Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).
Google Scholar
Green, S. A. & Bronner, M. E. Gene duplications and the early evolution of neural crest development. Semin. Cell Dev. Biol. 24, 95–100 (2013).
Google Scholar
Tsuda, M., Sakurai, D. & Goda, M. Direct evidence for the role of pigment cells in the brain of ascidian larvae by laser ablation. J. Exp. Biol. 206, 1409–1417 (2003).
Google Scholar
Chacha, P. P. et al. Neuronal identities derived by misexpression of the POU IV sensory determinant in a protovertebrate. Proc. Natl Acad. Sci. USA 119, e2118817119 (2022).
Google Scholar
Horie, R. et al. Shared evolutionary origin of vertebrate neural crest and cranial placodes. Nature 560, 228–232 (2018).
Google Scholar
Haupaix, N. et al. Ephrin-mediated restriction of ERK1/2 activity delimits the number of pigment cells in the Ciona CNS. Dev. Biol. 394, 170–180 (2014).
Google Scholar
Nishida, H. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev. Biol. 121, 526–541 (1987).
Google Scholar
Racioppi, C. et al. Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis. Nat. Commun. 5, 4830 (2014).
Google Scholar
Nicol, D. & Meinertzhagen, I. A. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. I. The early lineages of the neural plate. Dev. Biol. 130, 721–736 (1988).
Google Scholar
Nishida, H. & Satoh, N. Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. II. The 16- and 32-cell stages. Dev. Biol. 110, 440–454 (1985).
Google Scholar
Hudson, C. The central nervous system of ascidian larvae. Wiley Interdiscip. Rev. Dev. Biol. 5, 538–561 (2016).
Google Scholar
Oonuma, K. & Kusakabe, T. G. The complete cell lineage and MAPK- and Otx-dependent specification of the dopaminergic cells in the Ciona brain. Development 148, dev198754 (2021).
Google Scholar
Oonuma, K. et al. Revised lineage of larval photoreceptor cells in Ciona reveals archetypal collaboration between neural tube and neural crest in sensory organ formation. Dev. Biol. 420, 178–185 (2016).
Google Scholar
Cao, C. et al. Comprehensive single-cell transcriptome lineages of a proto-vertebrate. Nature 571, 349–354 (2019).
Google Scholar
Islam, A. F., Moly, P. K., Miyamoto, Y. & Kusakabe, T. G. Distinctive expression patterns of Hedgehog pathway genes in the Ciona intestinalis larva: implications for a role of Hedgehog signaling in postembryonic development and chordate evolution. Zoolog. Sci. 27, 84–90 (2010).
Google Scholar
Lemaire, L. A., Cao, C., Yoon, P. H., Long, J. & Levine, M. The hypothalamus predates the origin of vertebrates. Sci. Adv. 7, eabf7452 (2021).
Google Scholar
Daruwala, R., Song, J., Koh, W. S., Rumsey, S. C. & Levine, M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 460, 480–484 (1999).
Google Scholar
Wang, H. et al. Human Na(+)-dependent vitamin C transporter 1 (hSVCT1): primary structure, functional characteristics and evidence for a non-functional splice variant. Biochim. Biophys. Acta 1461, 1–9 (1999).
Google Scholar
Ryan, K., Lu, Z. & Meinertzhagen, I. A. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling. eLife 5, e16962 (2016).
Google Scholar
Crowther, R. J. & Whittaker, J. R. Structure of the caudal neural tube in an ascidian larva: vestiges of its possible evolutionary origin from a ciliated band. J. Neurobiol. 23, 280–292 (1992).
Google Scholar
Dilly, P. N. Studies on the receptors in the cerebral vesicle of the ascidian tadpole. 2. The ocellus. J. Cell Sci. s3-105, 13–20 (1964).
Google Scholar
Konno, A. et al. Distribution and structural diversity of cilia in tadpole larvae of the ascidian Ciona intestinalis. Dev. Biol. 337, 42–62 (2010).
Google Scholar
Nicol, D. & Meinertzhagen, I. A. Cell counts and maps in the larval central nervous system of the ascidian Ciona intestinalis (L.). J. Comp. Neurol. 309, 415–429 (1991).
Google Scholar
Chizhikov, V. V. & Millen, K. J. Control of roof plate development and signaling by Lmx1b in the caudal vertebrate CNS. J. Neurosci. 24, 5694–5703 (2004).
Google Scholar
Imai, K. S., Levine, M., Satoh, N. & Satou, Y. Regulatory blueprint for a chordate embryo. Science 312, 1183–1187 (2006).
Google Scholar
Imai, K. S., Stolfi, A., Levine, M. & Satou, Y. Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. Development 136, 285–293 (2009).
Google Scholar
Ishida, T. & Satou, Y. Ascidian embryonic cells with properties of neural-crest cells and neuromesodermal progenitors of vertebrates. Nat. Ecol. Evol. 8, 1154–1164 (2024).
Google Scholar
Millonig, J. H., Millen, K. J. & Hatten, M. E. The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000).
Google Scholar
Mishima, Y., Lindgren, A. G., Chizhikov, V. V., Johnson, R. L. & Millen, K. J. Overlapping function of Lmx1a and Lmx1b in anterior hindbrain roof plate formation and cerebellar growth. J. Neurosci. 29, 11377–11384 (2009).
Google Scholar
Wagner, E. & Levine, M. FGF signaling establishes the anterior border of the Ciona neural tube. Development 139, 2351–2359 (2012).
Google Scholar
Horie, T. et al. Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 469, 525–528 (2011).
Google Scholar
Imai, J. H. & Meinertzhagen, I. A. Neurons of the ascidian larval nervous system in Ciona intestinalis: I. Central nervous system. J. Comp. Neurol. 501, 316–334 (2007).
Google Scholar
Delannet, M. & Duband, J. L. Transforming growth factor-beta control of cell-substratum adhesion during avian neural crest cell emigration in vitro. Development 116, 275–287 (1992).
Google Scholar
Tosney, K. W. The early migration of neural crest cells in the trunk region of the avian embryo: an electron microscopic study. Dev. Biol. 62, 317–333 (1978).
Google Scholar
Zhao, R. & Trainor, P. A. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin. Cell Dev. Biol. 138, 54–67 (2023).
Google Scholar
Hozumi, A., Horie, T. & Sasakura, Y. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev. Dyn. 244, 1375–1393 (2015).
Google Scholar
Kimble, J. Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. Dev. Biol. 87, 286–300 (1981).
Google Scholar
Nicol, D. & Meinertzhagen, I. A. Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. II. Neural plate morphogenesis and cell lineages during neurulation. Dev. Biol. 130, 737–766 (1988).
Google Scholar
Takemoto, T. et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470, 394–398 (2011).
Google Scholar
Lukoseviciute, M., Mayes, S. & Sauka-Spengler, T. Neuromesodermal progenitor origin of trunk neural crest in vivo. Preprint at bioRxiv https://doi.org/10.1101/2021.02.10.430513 (2021).
McGrew, M. J. et al. Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135, 2289–2299 (2008).
Google Scholar
Rodrigo Albors, A., Halley, P. A. & Storey, K. G. Lineage tracing of axial progenitors using Nkx1-2CreER(T2) mice defines their trunk and tail contributions. Development 145, dev164319 (2018).
Google Scholar
Wymeersch, F. J. et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. eLife 5, e10042 (2016).
Google Scholar
Kotov, A. et al. A time-resolved single-cell roadmap of the logic driving anterior neural crest diversification from neural border to migration stages. Proc. Natl Acad. Sci. USA 121, e2311685121 (2024).
Google Scholar
Schock, E. N., York, J. R., Li, A. P., Tu, A. Y. & LaBonne, C. SoxB1 transcription factors are essential for initiating and maintaining neural plate border gene expression. Development 151, dev202693 (2024).
York, J. R. et al. Shared features of blastula and neural crest stem cells evolved at the base of vertebrates. Nat. Ecol. Evol. 8, 1680–1692 (2024).
Christiaen, L., Wagner, E., Shi, W. & Levine, M. Electroporation of transgenic DNAs in the sea squirt Ciona. Cold Spring Harb. Protoc 2009, pdb prot5345 (2009).
Google Scholar
Christiaen, L., Wagner, E., Shi, W. & Levine, M. Isolation of sea squirt (Ciona) gametes, fertilization, dechorionation, and development. Cold Spring Harb. Protoc. 2009, pdb prot5344 (2009).
Google Scholar
Satou, Y., Kawashima, T., Shoguchi, E., Nakayama, A. & Satoh, N. An integrated database of the ascidian, Ciona intestinalis: towards functional genomics. Zoolog. Sci. 22, 837–843 (2005).
Google Scholar
Satou, Y. et al. A manually curated gene model set for an ascidian, Ciona robusta (Ciona intestinalis Type A). Zoolog. Sci. 39, 253–260 (2022).
Google Scholar
Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis. Science 320, 1349–1352 (2008).
Google Scholar
Stauffer, T. P., Ahn, S. & Meyer, T. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr. Biol. 8, 343–346 (1998).
Google Scholar
Shaner, N. C. et al. A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat. Methods 10, 407–409 (2013).
Google Scholar
Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J 418, 567–574 (2009).
Google Scholar
Akama-Garren, E. H. et al. A modular assembly platform for rapid generation of DNA constructs. Sci. Rep. 6, 16836 (2016).
Google Scholar
Gurskaya, N. G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).
Google Scholar
Hotta, K., Dauga, D. & Manni, L. The ontology of the anatomy and development of the solitary ascidian Ciona: the swimming larva and its metamorphosis. Sci. Rep. 10, 17916 (2020).
Google Scholar
Treen, N., Chavarria, E., Weaver, C. J., Brangwynne, C. P. & Levine, M. An FGF timer for zygotic genome activation. Genes Dev. 37, 80–85 (2023).
Google Scholar
Long, J. et al. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc. Natl Acad. Sci. USA 120, e2309989120 (2023).
Google Scholar
Dempsey, W. P., Fraser, S. E. & Pantazis, P. PhOTO zebrafish: a transgenic resource for in vivo lineage tracing during development and regeneration. PLoS ONE 7, e32888 (2012).
Google Scholar
Osugi, T., Sasakura, Y. & Satake, H. The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci. Rep. 10, 1892 (2020).
Google Scholar
Kusakabe, T., Swalla, B. J., Satoh, N. & Jeffery, W. R. Mechanism of an evolutionary change in muscle cell differentiation in ascidians with different modes of development. Dev. Biol. 174, 379–392 (1996).
Google Scholar
Horie, T., Nakagawa, M., Sasakura, Y., Kusakabe, T. G. & Tsuda, M. Simple motor system of the ascidian larva: neuronal complex comprising putative cholinergic and GABAergic/glycinergic neurons. Zoolog. Sci. 27, 181–190 (2010).
Google Scholar
Horie, T., Kusakabe, T. & Tsuda, M. Glutamatergic networks in the Ciona intestinalis larva. J. Comp. Neurol. 508, 249–263 (2008).
Google Scholar
Gregory, C. & Veeman, M. 3D-printed microwell arrays for Ciona microinjection and timelapse imaging. PLoS ONE 8, e82307 (2013).
Google Scholar
Negishi, T., McDougall, A. & Yasuo, H. Practical tips for imaging ascidian embryos. Dev. Growth Differ. 55, 446–453 (2013).
Google Scholar
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
Satou, Y. et al. A nearly complete genome of Ciona intestinalis Type A (C. robusta) reveals the contribution of inversion to chromosomal evolution in the genus Ciona. Genome Biol. Evol. 11, 3144–3157 (2019).
Google Scholar
Lemaire, L. A. Neural crest lineage in the proto-vertebrate model Ciona. Zenodo https://doi.org/10.5281/zenodo.13733541 (2024).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
Google Scholar