Overconfidence in climate overshoot – Nature
Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).
Google Scholar
IPCC. Summary for policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) 1–48 (Cambridge Univ. Press, 2022).
Prütz, R., Strefler, J., Rogelj, J. & Fuss, S. Understanding the carbon dioxide removal range in 1.5 °C compatible and high overshoot pathways. Environ. Res. Commun. 5, 041005 (2023).
Google Scholar
Schwinger, J., Asaadi, A., Steinert, N. J. & Lee, H. Emit now, mitigate later? Earth system reversibility under overshoots of different magnitudes and durations. Earth Syst. Dyn. 13, 1641–1665 (2022).
Google Scholar
Pfleiderer, P., Schleussner, C.-F. & Sillmann, J. Limited reversal of regional climate signals in overshoot scenarios. Environ. Res. Clim. 3, 015005 (2024).
Google Scholar
IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 3−32 (Cambridge Univ. Press, 2021).
MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2. Biogeosciences 17, 2987–3016 (2020).
Google Scholar
Smith, S. et al. The State of Carbon Dioxide Removal 1st edn (MCC, 2023).
Deprez, A. et al. Sustainability limits needed for CO2 removal. Science 383, 484–486 (2024).
Google Scholar
Schneider, S. H. & Mastrandrea, M. D. Probabilistic assessment of “dangerous” climate change and emissions pathways. Proc. Natl Acad. Sci. USA 102, 15728–15735 (2005).
Google Scholar
Wigley, T. M. L., Richels, R. & Edmonds, J. A. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature 379, 240–243 (1996).
Google Scholar
Azar, C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. 8, 034004 (2013).
Google Scholar
Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 6, 827–835 (2016).
Google Scholar
Rajamani, L. & Werksman, J. The legal character and operational relevance of the Paris Agreement’s temperature goal. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 20160458 (2018).
Google Scholar
Riahi, K. et al. Mitigation pathways compatible with long-term goals. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Shukla, P. R. et al.) 295–408 (Cambridge Univ. Press, 2022).
Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).
Google Scholar
Schleussner, C.-F., Ganti, G., Rogelj, J. & Gidden, M. J. An emission pathway classification reflecting the Paris Agreement climate objectives. Commun. Earth Environ. 3, 135 (2022).
Google Scholar
Forster, P. et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 923–1054 (Cambridge Univ. Press, 2023).
Palazzo Corner, S. et al. The Zero Emissions Commitment and climate stabilization. Front. Sci. 1, 1170744 (2023).
Google Scholar
Grassi, G. et al. Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth Syst. Sci. Data 15, 1093–1114 (2023).
Google Scholar
Meinshausen, M. et al. A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs). Geosci. Model Dev. 17, 4533–4559 (2024).
Google Scholar
Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).
Google Scholar
Baur, S., Nauels, A., Nicholls, Z., Sanderson, B. M. & Schleussner, C.-F. The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty. Earth Syst. Dyn. 14, 367–381 (2023).
Google Scholar
Canadell, J. G. et al. Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 673–816 (Cambridge Univ. Press, 2021).
McLaren, D., Willis, R., Szerszynski, B., Tyfield, D. & Markusson, N. Attractions of delay: using deliberative engagement to investigate the political and strategic impacts of greenhouse gas removal technologies. Environ. Plan. E Nat. Space 6, 578–599 (2023).
Google Scholar
Powis, C. M., Smith, S. M., Minx, J. C. & Gasser, T. Quantifying global carbon dioxide removal deployment. Environ. Res. Lett. 18, 024022 (2023).
Google Scholar
Lamb, W. F. et al. The carbon dioxide removal gap. Nat. Clim. Change 14, 644–651 (2024).
Google Scholar
Prütz, R., Fuss, S., Lück, S., Stephan, L. & Rogelj, J. A taxonomy to map evidence on the co-benefits, challenges, and limits of carbon dioxide removal. Commun. Earth Environ. 5, 197 (2024).
Google Scholar
Stuart-Smith, R. F., Rajamani, L., Rogelj, J. & Wetzer, T. Legal limits to the use of CO2 removal. Science 382, 772–774 (2023).
Google Scholar
King, A. D. et al. Preparing for a post-net-zero world. Nat. Clim. Change 12, 775–777 (2022).
Google Scholar
Bellomo, K., Angeloni, M., Corti, S. & von Hardenberg, J. Future climate change shaped by inter-model differences in Atlantic meridional overturning circulation response. Nat. Commun. 12, 3659 (2021).
Google Scholar
Schwinger, J., Asaadi, A., Goris, N. & Lee, H. Possibility for strong northern hemisphere high-latitude cooling under negative emissions. Nat. Commun. 13, 1095 (2022).
Google Scholar
Möller, T. et al. Achieving net zero greenhouse gas emissions critical to limit climate tipping risks. Nat. Commun. 15, 6192 (2024).
Google Scholar
Santana-Falcón, Y. et al. Irreversible loss in marine ecosystem habitability after a temperature overshoot. Commun. Earth Environ. 4, 343 (2023).
Google Scholar
Schleussner, C.-F. et al. Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty. Environ. Res. Lett. 13, 064007 (2018).
Google Scholar
Meyer, A. L. S., Bentley, J., Odoulami, R. C., Pigot, A. L. & Trisos, C. H. Risks to biodiversity from temperature overshoot pathways. Philos. Trans. R. Soc. B Biol. Sci. 377, 20210394 (2022).
Google Scholar
Mengel, M., Nauels, A., Rogelj, J. & Schleussner, C.-F. Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action. Nat. Commun. 9, 601 (2018).
Google Scholar
Andrijevic, M. et al. Towards scenario representation of adaptive capacity for global climate change assessments. Nat. Clim. Change 13, 778–787 (2023).
Google Scholar
Thomas, A. et al. Global evidence of constraints and limits to human adaptation. Reg. Environ. Change 21, 85 (2021).
Google Scholar
Birkmann, J. et al. Poverty, Livelihoods and Sustainable Development. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 1171–1274 (IPCC, 2022).
Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).
Google Scholar
Parry, M., Lowe, J. & Hanson, C. Overshoot, adapt and recover. Nature 458, 1102–1103 (2009).
Google Scholar
Williams, J. W., Ordonez, A. & Svenning, J.-C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).
Google Scholar
UNFCC. National Adaptation Plans 2021. Progress in the Formulation and Implementation of NAPs (UNFCC, 2022).
Caney, S. Climate change, intergenerational equity and the social discount rate. Polit. Philos. Econ. 13, 320–342 (2014).
Google Scholar
MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 376, 20160454 (2018).
Google Scholar
Biermann, F. et al. Solar geoengineering: the case for an international non-use agreement. WIREs Clim. Change 13, e754 (2022).
Google Scholar
Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).
Google Scholar
Silvy, Y. et al. AERA-MIP: emission pathways, remaining budgets and carbon cycle dynamics compatible with 1.5 ºC and 2 ºC global warming stabilization. Preprint at https://doi.org/10.5194/egusphere-2024-488 (2024).
Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Change 19, 240–247 (2009).
Google Scholar
Lamboll, R., Rogelj, J. & Schleussner, C.-F. A guide to scenarios for the PROVIDE project. ESS Open Archive https://doi.org/10.1002/essoar.10511875.2 (2022).
Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).
Google Scholar
Riahi, K. et al. Mitigation pathways compatible with long-term goals. in IPCC, 2022: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
Byers, E. et al. AR6 scenarios database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).
Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).
Google Scholar
Nicholls, Z. et al. Cross-Chapter Box 7.1: Physical emulation of Earth System Models for scenario classification and knowledge integration in AR6. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
IPCC. Annex VII: Glossary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Matthews, J. B. R. et al.) 2215–2256 (Cambridge Univ. Press, 2021).
Sherwood, S. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).
Google Scholar
Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).
Google Scholar
Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).
Google Scholar
Terhaar, J., Frölicher, T. L., Aschwanden, M. T., Friedlingstein, P. & Joos, F. Adaptive emission reduction approach to reach any global warming target. Nat. Clim. Change 12, 1136–1142 (2022).
Google Scholar
Frölicher, T. L., Jens, T., Fortunat, J. & Yona, S. Protocol for Adaptive Emission Reduction Approach (AERA) simulations. Zenodo https://doi.org/10.5281/zenodo.7473133 (2022).
Seland, Ø. et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 13, 6165–6200 (2020).
Google Scholar
Jones, C. D. et al. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero carbon emissions. Geosci. Model Dev. 12, 4375–4385 (2019).
Google Scholar
De Hertog, S. J. et al. The biogeophysical effects of idealized land cover and land management changes in Earth system models. Earth Syst. Dyn. 14, 629–667 (2023).
Google Scholar
O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. Discuss. 9, 3461–3482 (2016).
Google Scholar
Quilcaille, Y., Gasser, T., Ciais, P. & Boucher, O. CMIP6 simulations with the compact Earth system model OSCAR v3.1. Geosci. Model Dev. 16, 1129–1161 (2023).
Google Scholar
Qiu, C. et al. A strong mitigation scenario maintains climate neutrality of northern peatlands. One Earth 5, 86–97 (2022).
Google Scholar
Lamboll, R., Rogelj, J. & Schleussner, C.-F. Scenario emissions and temperature data for PROVIDE project (v.1.1.1). Zenodo https://doi.org/10.5281/zenodo.6963586 (2022).
Lacroix, F., Burger, F., Silvy, Y., Schleussner, C.-F., & Frölicher, T. L. GFDL-ESM2M overshoot data. Zenodo https://doi.org/10.5281/zenodo.11091132 (2024).
Schleussner, C.-F. et al. Accompanying scripts for Schleussner et al. Overconfidence in Climate Overshoot. Zenodo https://doi.org/10.5281/zenodo.13208166 (2024).
Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Change 11, 925–936 (2021).
Google Scholar
Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).
Google Scholar
Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).
Google Scholar
Heikkinen, J., Keskinen, R., Kostensalo, J. & Nuutinen, V. Climate change induces carbon loss of arable mineral soils in boreal conditions. Glob. Change Biol. 28, 3960–3973 (2022).
Google Scholar
Chiquier, S., Patrizio, P., Bui, M., Sunny, N. & Dowell, N. M. A comparative analysis of the efficiency, timing, and permanence of CO2 removal pathways. Energy Environ. Sci. 15, 4389–4403 (2022).
Google Scholar
Mengis, N., Paul, A. & Fernández-Méndez, M. Counting (on) blue carbon—Challenges and ways forward for carbon accounting of ecosystem-based carbon removal in marine environments. PLoS Clim. 2, e0000148 (2023).
Google Scholar
Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environ. Res. Lett. 11, 095012 (2016).
Google Scholar
Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).
Google Scholar
Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts. Glob. Change Biol. 24, 3025–3038 (2018).
Google Scholar
Minx, J. C. et al. Negative emissions—Part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001–063001 (2018).
Google Scholar
Grant, N., Hawkes, A., Mittal, S. & Gambhir, A. Confronting mitigation deterrence in low-carbon scenarios. Environ. Res. Lett. 16, 64099–64099 (2021).
Google Scholar
Carton, W., Hougaard, I.-M., Markusson, N. & Lund, J. F. Is carbon removal delaying emission reductions? Wiley Interdiscip. Rev. Clim. Change 14, e826 (2023).
Google Scholar
Donnison, C. et al. Bioenergy with Carbon Capture and Storage (BECCS): finding the win–wins for energy, negative emissions and ecosystem services—size matters. Glob. Change Biol. Bioenergy 12, 586–604 (2020).
Google Scholar
Heck, V., Hoff, H., Wirsenius, S., Meyer, C. & Kreft, H. Land use options for staying within the Planetary Boundaries – Synergies and trade-offs between global and local sustainability goals. Glob. Environ. Change 49, 73–84 (2018).
Google Scholar
Doelman, J. C. et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Glob. Change Biol. 26, 1576–1591 (2020).
Google Scholar
Lee, K., Fyson, C. & Schleussner, C. F. Fair distributions of carbon dioxide removal obligations and implications for effective national net-zero targets. Environ. Res. Lett. 16, 094001 (2021).
Google Scholar
Ganti, G. et al. Uncompensated claims to fair emission space risk putting Paris Agreement goals out of reach. Environ. Res. Lett. 18, 024040 (2023).
Google Scholar
Yuwono, B. et al. Doing burden-sharing right to deliver natural climate solutions for carbon dioxide removal. Nat. Based Solut. 3, 100048 (2023).
Google Scholar