Peptide programming of supramolecular vinylidene fluoride ferroelectric phases – Nature
Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).
Google Scholar
Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).
Google Scholar
Wang, W., Li, J., Liu, H. & Ge, S. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. Weinh. 8, 2003074 (2021).
Google Scholar
Qian, X. et al. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature 600, 664–669 (2021).
Google Scholar
Liu, Y. et al. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96–100 (2018).
Google Scholar
Qian, X., Chen, X., Zhu, L. & Zhang, Q. M. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380, eadg0902 (2023).
Google Scholar
Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).
Google Scholar
Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).
Google Scholar
Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nat. Chem. 7, 281–294 (2015).
Google Scholar
Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).
Google Scholar
Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).
Google Scholar
Miyajima, D. et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science 336, 209–213 (2012).
Google Scholar
Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).
Google Scholar
Kawai, H. The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8, 975 (1969).
Google Scholar
Lovinger, A. J. Ferroelectric polymers. Science 220, 1115–1121 (1983).
Google Scholar
Guo, M. et al. Toroidal polar topology in strained ferroelectric polymer. Science 371, 1050–1056 (2021).
Google Scholar
Zhang, H.-Y., Tang, Y.-Y., Shi, P.-P. & Xiong, R.-G. Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019).
Google Scholar
Narayanan, A. et al. Ferroelectric polarization and second harmonic generation in supramolecular cocrystals with two axes of charge-transfer. J. Am. Chem. Soc. 139, 9186–9191 (2017).
Google Scholar
Kimura, K. & Ohigashi, H. Polarization behavior in vinylidene fluoride-trifluoroethylene copolymer thin films. Jpn. J. Appl. Phys. 25, 383 (1986).
Google Scholar
Herman, Umemoto, S., Kikutani, T. & Okui, N. Chain length effects on crystal formation in vinylidene fluoride oligomers. Polym. J. 30, 659–663 (1998).
Google Scholar
Yoshida, Y., Ishida, K., Ishizaki, K., Horiuchi, T. & Matsushige, K. Effect of substrate temperature on molecular orientation in evaporated thin films of vinylidene fluoride oligomer. Jpn. J. Appl. Phys. 36, 7389 (1997).
Google Scholar
Noda, K. et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J. Appl. Phys. 93, 2866–2870 (2003).
Google Scholar
García-Iglesias, M. et al. A versatile method for the preparation of ferroelectric supramolecular materials via radical end-functionalization of vinylidene fluoride oligomers. J. Am. Chem. Soc. 138, 6217–6223 (2016).
Google Scholar
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).
Google Scholar
Tantakitti, F. et al. Energy landscapes and functions of supramolecular systems. Nat. Mater. 15, 469–476 (2016).
Google Scholar
Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).
Google Scholar
Paramonov, S. E., Jun, H.-W. & Hartgerink, J. D. Self-assembly of peptide−amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291–7298 (2006).
Google Scholar
Muraoka, T., Cui, H. & Stupp, S. I. Quadruple helix formation of a photoresponsive peptide amphiphile and its light-triggered dissociation into single fibers. J. Am. Chem. Soc. 130, 2946–2947 (2008).
Google Scholar
Kobayashi, M., Tashiro, K. & Tadokoro, H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride). Macromolecules 8, 158–171 (1975).
Google Scholar
Shivu, B. et al. Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry 52, 5176–5183 (2013).
Google Scholar
Sangji, M. H. et al. Supramolecular interactions and morphology of self-assembling peptide amphiphile nanostructures. Nano Lett. 21, 6146–6155 (2021).
Google Scholar
Hasegawa, R., Takahashi, Y., Chatani, Y. & Tadokoro, H. Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polym. J. 3, 600–610 (1972).
Google Scholar
Yang, L. et al. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54, 1709–1728 (2013).
Google Scholar
Zhang, Q. M., Bharti, V. & Zhao, X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101–2104 (1998).
Google Scholar
Chen, X. et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field. Science 375, 1418–1422 (2022).
Google Scholar
Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2008).
Google Scholar
Leung, C.-Y. et al. Crystalline polymorphism induced by charge regulation in ionic membranes. Proc. Natl Acad. Sci. USA 110, 16309–16314 (2013).
Google Scholar
Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit. 18, 143–211 (1989).
Google Scholar
Álvarez, Z. et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science 374, 848–856 (2021).
Google Scholar
Hung, A. M. & Stupp, S. I. Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing. Langmuir 25, 7084–7089 (2009).
Google Scholar