Permafrost slows Arctic riverbank erosion – Nature
Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).
Google Scholar
Rowland, J. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).
Google Scholar
Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).
Google Scholar
Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).
Google Scholar
Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).
Google Scholar
Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).
Google Scholar
Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).
Google Scholar
Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5, eaaw9883 (2019).
Google Scholar
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).
Google Scholar
Rowland, J. C. et al. Scale-dependent influence of permafrost on riverbank erosion rates. J. Geophys. Res. Earth Surf. 128, e2023JF007101 (2023).
Google Scholar
Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).
Google Scholar
Ielpi, A., Lapôtre, M. G., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 13, 375–381 (2023).
Google Scholar
Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).
Google Scholar
Douglas, M. M., Dunne, K. B. & Lamb, M. P. Sediment entrainment and slump blocks limit permafrost riverbank erosion. Geophys. Res. Lett. 50, e2023GL102974 (2023).
Google Scholar
Phillips, C. B. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat. Rev. Earth Environ. 3, 406–419 (2022).
Google Scholar
Douglas, M. M. et al. Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain. Earth Surf. Dyn. 10, 421–435 (2022).
Google Scholar
Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resourc. Res. 43, W02411 (2007).
Google Scholar
Teufel, B. & Sushama, L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9, 858–862 (2019).
Google Scholar
Chadburn, S. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).
Google Scholar
Langhorst, T. & Pavelsky, T. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).
Google Scholar
Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).
Google Scholar
Constantine, C. R., Dunne, T. & Hanson, G. J. Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology 106, 242–252 (2009).
Google Scholar
Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).
Google Scholar
Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).
Google Scholar
Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).
Google Scholar
Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. 34, L14501 (2007).
Google Scholar
Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 1349–1359 (2003).
Google Scholar
Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. Professional Paper 1068. United States Geological Survey (1978).
Rowland, J. C. et al. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 184, 212–228 (2016).
Google Scholar
Langhorst, T. & Pavelsky, T. M. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).
Google Scholar
Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45, 1529–1558 (2007).
Google Scholar
Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions. Remote Sens. Environ. 168, 301–315 (2015).
Google Scholar
Douglas, M. M. et al. Permafrost formation in a meandering river floodplain. AGU Adv. 5, e2024AV001175 (2024).
Finnegan, N. J. & Dietrich, W. E. Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology 39, 143–146 (2011).
Google Scholar
Douglas, M. M., Miller, K. L., Schmeer, M. N. & Lamb, M. P. Ablation-limited erosion rates of permafrost riverbanks. J. Geophys. Res. Earth Surf. 128, e2023JF007098 (2023).
Google Scholar
Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89, 127–146 (1978).
Google Scholar
Dunne, K. B. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).
Google Scholar
Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).
Google Scholar
Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).
Google Scholar
Furbish, D. J. River-bend curvature and migration: how are they related? Geology 16, 752–755 (1988).
Google Scholar
Vanoni, V. A. & Brooks, N. H. Laboratory Studies of the Roughness and Suspended Load of Alluvial Streams (California Institute of Technology Sedimentation Laboratory, 1957).
Kean, J. W. & Smith, J. D. in Riparian Vegetation and Fluvial Geomorphology Vol. 8 (eds Bennett, S. J. & Simon, A.) 237–252 (American Geophysical Union, 2004).
Li, T., Venditti, J. G., Rennie, C. D. & Nelson, P. A. Bed and bank stress partitioning in bedrock rivers. J. Geophys. Res. Earth Surf. 127, e2021JF006360 (2022).
Google Scholar
Ferguson, R. I., Hardy, R. J. & Hodge, R. A. Flow resistance and hydraulic geometry in bedrock rivers with multiple roughness length scales. Earth Surf. Process. Landf. 44, 2437–2449 (2019).
Google Scholar
Douglas, M. M. & Lamb, M. P. A model for thaw and erosion of permafrost riverbanks. J. Geophys. Res. Earth Surf. 129, e2023JF007452 (2024).
Google Scholar
Leprince, S. Monitoring Earth Surface Dynamics With Optical Imagery. PhD thesis, California Institute of Technology (2008).
Altena, B. & Leinss, S. Improved surface displacement estimation through stacking cross-correlation spectra from multi-channel imagery. Sci. Remote Sens. 6, 100070 (2022).
Google Scholar
Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).
Google Scholar
Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).
Google Scholar
Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).
Google Scholar
Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).
Google Scholar
Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. OSF (Open Science Framework) https://doi.org/10.17605/OSF.IO/TQX3F (2018).
Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181–198 (2021).
Google Scholar
Zhang, T. et al. A Bayesian framework for subsidence modeling in sedimentary basins: a case study of the Tonian Akademikerbreen Group of Svalbard, Norway. Earth Planet. Sci. Lett. 620, 118317 (2023).
Google Scholar
Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (U.S. Army Corps of Engineers, 1944).
Leopold, L. B. & Wolman, M. G. River meanders. Geol. Soc. Am. Bull. 71, 769–793 (1960).
Google Scholar
Hickin, E. J. & Nanson, G. C. The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geol. Soc. Am. Bull. 86, 487–494 (1975).
Google Scholar
Dietrich, W. E., Smith, J. D. & Dunne, T. Flow and sediment transport in a sand bedded meander. J. Geol. 87, 305–315 (1979).
Google Scholar
Hooke, R. L. B. Distribution of sediment transport and shear stress in a meander bend. J. Geol. 83, 543–565 (1975).
Google Scholar
Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).
Google Scholar
Bagnold, R. A. Some Aspects of the Shape of River Meanders (US Government Printing Office, 1960).
Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455–1483 (2014).
Google Scholar
Nicoll, T. J. & Hickin, E. J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 116, 37–47 (2010).
Google Scholar
Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).
Google Scholar
Finotello, A. et al. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proc. Natl Acad. Sci. 115, 1463–1468 (2018).
Google Scholar
Hooke, J. River meander behaviour and instability: a framework for analysis. Trans. Inst. Br. Geogr. 28, 238–253 (2003).
Google Scholar
Douglas, M. et al. Geomorphic mapping and permafrost occurrence on the Koyukuk River floodplain near Huslia, Alaska (ESS-DIVE dataset) (2023).
Geyman, E., Avouac, J.-P., Douglas, M. & Lamb, M. Resolving the spatial and seasonal pattern of riverbank erosion on the Koyukuk River, Alaska, 2016–2022. Arctic Data Center (2024).
Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16–28 (2018).
Google Scholar
Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Reg. Sci. Technol. 185, 103239 (2021).
Google Scholar
Milburn, D. & Prowse, T. D. The effect of river-ice break-up on suspended sediment and select trace-element fluxes: paper presented at the 10th Northern Res. Basin Symposium (Svalbard, Norway – 28 Aug./3 Sept. 1994). Hydrol. Res. 27, 69–84 (1996).
Google Scholar
Ettema, R. Review of alluvial-channel responses to river ice. J. Cold Reg. Eng. 16, 191–217 (2002).
Google Scholar
Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162–171 (2014).
Google Scholar
Lininger, K., Wohl, E., Rose, J. & Leisz, S. Significant floodplain soil organic carbon storage along a large high-latitude river and its tributaries. Geophys. Res. Lett. 46, 2121–2129 (2019).
Google Scholar
Lunardini, V. J., Zisson, J. R. & Yen, Y. C. Experimental Determination of Heat Transfer Coefficients in Water Flowing over a Horizontal Ice Sheet (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1986).