Permafrost slows Arctic riverbank erosion – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rowland, J. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).

    Article 
    ADS 

    Google Scholar 

  • Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. 3, 55–67 (2022).

    Article 
    ADS 

    Google Scholar 

  • Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Article 
    ADS 

    Google Scholar 

  • Terhaar, J., Lauerwald, R., Regnier, P., Gruber, N. & Bopp, L. Around one third of current Arctic Ocean primary production sustained by rivers and coastal erosion. Nat. Commun. 12, 169 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851 (2022).

    Article 
    ADS 

    Google Scholar 

  • Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Article 
    ADS 

    Google Scholar 

  • Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5, eaaw9883 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J. & Romanovsky, V. E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3, 10–23 (2022).

    Article 
    ADS 

    Google Scholar 

  • Rowland, J. C. et al. Scale-dependent influence of permafrost on riverbank erosion rates. J. Geophys. Res. Earth Surf. 128, e2023JF007101 (2023).

    Article 
    ADS 

    Google Scholar 

  • Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).

    Article 
    ADS 

    Google Scholar 

  • Ielpi, A., Lapôtre, M. G., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Nat. Clim. Change 13, 375–381 (2023).

    Article 
    ADS 

    Google Scholar 

  • Kanevskiy, M. et al. Patterns and rates of riverbank erosion involving ice-rich permafrost (yedoma) in northern Alaska. Geomorphology 253, 370–384 (2016).

    Article 
    ADS 

    Google Scholar 

  • Douglas, M. M., Dunne, K. B. & Lamb, M. P. Sediment entrainment and slump blocks limit permafrost riverbank erosion. Geophys. Res. Lett. 50, e2023GL102974 (2023).

    Article 
    ADS 

    Google Scholar 

  • Phillips, C. B. et al. Threshold constraints on the size, shape and stability of alluvial rivers. Nat. Rev. Earth Environ. 3, 406–419 (2022).

    Article 
    ADS 

    Google Scholar 

  • Douglas, M. M. et al. Organic carbon burial by river meandering partially offsets bank erosion carbon fluxes in a discontinuous permafrost floodplain. Earth Surf. Dyn. 10, 421–435 (2022).

    Article 
    ADS 

    Google Scholar 

  • Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001–2005. Water Resourc. Res. 43, W02411 (2007).

    Article 
    ADS 

    Google Scholar 

  • Teufel, B. & Sushama, L. Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9, 858–862 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chadburn, S. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Change 7, 340–344 (2017).

    Article 
    ADS 

    Google Scholar 

  • Langhorst, T. & Pavelsky, T. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).

    Article 
    ADS 

    Google Scholar 

  • Chassiot, L., Lajeunesse, P. & Bernier, J.-F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).

    Article 

    Google Scholar 

  • Constantine, C. R., Dunne, T. & Hanson, G. J. Examining the physical meaning of the bank erosion coefficient used in meander migration modeling. Geomorphology 106, 242–252 (2009).

    Article 
    ADS 

    Google Scholar 

  • Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).

    Article 
    ADS 

    Google Scholar 

  • Feng, D. et al. Recent changes to Arctic river discharge. Nat. Commun. 12, 6917 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costard, F. et al. Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia. Geophys. Res. Lett. 34, L14501 (2007).

    Article 
    ADS 

    Google Scholar 

  • Costard, F., Dupeyrat, L., Gautier, E. & Carey-Gailhardis, E. Fluvial thermal erosion investigations along a rapidly eroding river bank: application to the Lena River (central Siberia). Earth Surf. Process. Landf. 28, 1349–1359 (2003).

    Article 
    ADS 

    Google Scholar 

  • Scott, K. M. Effects of permafrost on stream channel behavior in Arctic Alaska. Professional Paper 1068. United States Geological Survey (1978).

  • Rowland, J. C. et al. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 184, 212–228 (2016).

    Article 
    ADS 

    Google Scholar 

  • Langhorst, T. & Pavelsky, T. M. Global observations of riverbank erosion and accretion from Landsat imagery. J. Geophys. Res. Earth Surf. 128, e2022JF006774 (2023).

    Article 
    ADS 

    Google Scholar 

  • Leprince, S., Barbot, S., Ayoub, F. & Avouac, J.-P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 45, 1529–1558 (2007).

    Article 
    ADS 

    Google Scholar 

  • Pastick, N. J. et al. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions. Remote Sens. Environ. 168, 301–315 (2015).

    Article 
    ADS 

    Google Scholar 

  • Douglas, M. M. et al. Permafrost formation in a meandering river floodplain. AGU Adv. 5, e2024AV001175 (2024).

  • Finnegan, N. J. & Dietrich, W. E. Episodic bedrock strath terrace formation due to meander migration and cutoff. Geology 39, 143–146 (2011).

    Article 
    ADS 

    Google Scholar 

  • Douglas, M. M., Miller, K. L., Schmeer, M. N. & Lamb, M. P. Ablation-limited erosion rates of permafrost riverbanks. J. Geophys. Res. Earth Surf. 128, e2023JF007098 (2023).

    Article 
    ADS 

    Google Scholar 

  • Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89, 127–146 (1978).

    Article 
    ADS 

    Google Scholar 

  • Dunne, K. B. & Jerolmack, D. J. What sets river width? Sci. Adv. 6, eabc1505 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Partheniades, E. Erosion and deposition of cohesive soils. J. Hydraul. Div. 91, 105–139 (1965).

    Article 

    Google Scholar 

  • Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).

    Article 
    ADS 

    Google Scholar 

  • Furbish, D. J. River-bend curvature and migration: how are they related? Geology 16, 752–755 (1988).

    Article 
    ADS 

    Google Scholar 

  • Vanoni, V. A. & Brooks, N. H. Laboratory Studies of the Roughness and Suspended Load of Alluvial Streams (California Institute of Technology Sedimentation Laboratory, 1957).

  • Kean, J. W. & Smith, J. D. in Riparian Vegetation and Fluvial Geomorphology Vol. 8 (eds Bennett, S. J. & Simon, A.) 237–252 (American Geophysical Union, 2004).

  • Li, T., Venditti, J. G., Rennie, C. D. & Nelson, P. A. Bed and bank stress partitioning in bedrock rivers. J. Geophys. Res. Earth Surf. 127, e2021JF006360 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ferguson, R. I., Hardy, R. J. & Hodge, R. A. Flow resistance and hydraulic geometry in bedrock rivers with multiple roughness length scales. Earth Surf. Process. Landf. 44, 2437–2449 (2019).

    Article 
    ADS 

    Google Scholar 

  • Douglas, M. M. & Lamb, M. P. A model for thaw and erosion of permafrost riverbanks. J. Geophys. Res. Earth Surf. 129, e2023JF007452 (2024).

    Article 
    ADS 

    Google Scholar 

  • Leprince, S. Monitoring Earth Surface Dynamics With Optical Imagery. PhD thesis, California Institute of Technology (2008).

  • Altena, B. & Leinss, S. Improved surface displacement estimation through stacking cross-correlation spectra from multi-channel imagery. Sci. Remote Sens. 6, 100070 (2022).

    Article 

    Google Scholar 

  • Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).

    Article 
    ADS 

    Google Scholar 

  • Ikeda, S., Parker, G. & Sawai, K. Bend theory of river meanders. Part 1. Linear development. J. Fluid Mech. 112, 363–377 (1981).

    Article 
    ADS 

    Google Scholar 

  • Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Keller, C. B. Chron.jl: a Bayesian framework for integrated eruption age and age-depth modelling. OSF (Open Science Framework) https://doi.org/10.17605/OSF.IO/TQX3F (2018).

  • Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181–198 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, T. et al. A Bayesian framework for subsidence modeling in sedimentary basins: a case study of the Tonian Akademikerbreen Group of Svalbard, Norway. Earth Planet. Sci. Lett. 620, 118317 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fisk, H. N. Geological Investigation of the Alluvial Valley of the Lower Mississippi River (U.S. Army Corps of Engineers, 1944).

  • Leopold, L. B. & Wolman, M. G. River meanders. Geol. Soc. Am. Bull. 71, 769–793 (1960).

    Article 
    ADS 

    Google Scholar 

  • Hickin, E. J. & Nanson, G. C. The character of channel migration on the Beatton River, northeast British Columbia, Canada. Geol. Soc. Am. Bull. 86, 487–494 (1975).

    Article 
    ADS 

    Google Scholar 

  • Dietrich, W. E., Smith, J. D. & Dunne, T. Flow and sediment transport in a sand bedded meander. J. Geol. 87, 305–315 (1979).

    Article 
    ADS 

    Google Scholar 

  • Hooke, R. L. B. Distribution of sediment transport and shear stress in a meander bend. J. Geol. 83, 543–565 (1975).

    Article 
    ADS 

    Google Scholar 

  • Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bagnold, R. A. Some Aspects of the Shape of River Meanders (US Government Printing Office, 1960).

  • Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. Earth Surf. 119, 1455–1483 (2014).

    Article 
    ADS 

    Google Scholar 

  • Nicoll, T. J. & Hickin, E. J. Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology 116, 37–47 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hudson, P. F. & Kesel, R. H. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).

    Article 
    ADS 

    Google Scholar 

  • Finotello, A. et al. Field migration rates of tidal meanders recapitulate fluvial morphodynamics. Proc. Natl Acad. Sci. 115, 1463–1468 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hooke, J. River meander behaviour and instability: a framework for analysis. Trans. Inst. Br. Geogr. 28, 238–253 (2003).

    Article 

    Google Scholar 

  • Douglas, M. et al. Geomorphic mapping and permafrost occurrence on the Koyukuk River floodplain near Huslia, Alaska (ESS-DIVE dataset) (2023).

  • Geyman, E., Avouac, J.-P., Douglas, M. & Lamb, M. Resolving the spatial and seasonal pattern of riverbank erosion on the Koyukuk River, Alaska, 2016–2022. Arctic Data Center (2024).

  • Beltaos, S., Carter, T., Rowsell, R. & DePalma, S. G. Erosion potential of dynamic ice breakup in Lower Athabasca River. Part I: field measurements and initial quantification. Cold Reg. Sci. Technol. 149, 16–28 (2018).

    Article 

    Google Scholar 

  • Vandermause, R., Harvey, M., Zevenbergen, L. & Ettema, R. River-ice effects on bank erosion along the middle segment of the Susitna river, Alaska. Cold Reg. Sci. Technol. 185, 103239 (2021).

    Article 

    Google Scholar 

  • Milburn, D. & Prowse, T. D. The effect of river-ice break-up on suspended sediment and select trace-element fluxes: paper presented at the 10th Northern Res. Basin Symposium (Svalbard, Norway – 28 Aug./3 Sept. 1994). Hydrol. Res. 27, 69–84 (1996).

    Article 
    CAS 

    Google Scholar 

  • Ettema, R. Review of alluvial-channel responses to river ice. J. Cold Reg. Eng. 16, 191–217 (2002).

    Article 

    Google Scholar 

  • Costard, F., Gautier, E., Fedorov, A., Konstantinov, P. & Dupeyrat, L. An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr. Periglac. Process. 25, 162–171 (2014).

    Article 

    Google Scholar 

  • Lininger, K., Wohl, E., Rose, J. & Leisz, S. Significant floodplain soil organic carbon storage along a large high-latitude river and its tributaries. Geophys. Res. Lett. 46, 2121–2129 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lunardini, V. J., Zisson, J. R. & Yen, Y. C. Experimental Determination of Heat Transfer Coefficients in Water Flowing over a Horizontal Ice Sheet (US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1986).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    The speed of smell is faster than expected
    The speed of smell is faster than expected
    How Trump’s tariffs could drive up the cost of batteries, EVs, and more
    The Download: Trump’s tariffs, and the DOJ’s proposals for Google
    Normal breast tissues harbour rare populations of aneuploid epithelial cells - Nature
    Normal breast tissues harbour rare populations of aneuploid epithelial cells – Nature
    What Trump’s election victory could mean for AI, climate and more
    What Trump’s election victory could mean for AI, climate and more
    South Korea can boost the research potential of low-income countries
    South Korea can boost the research potential of low-income countries
    Google DeepMind’s new AI model is the best yet at weather forecasting
    Google DeepMind’s new AI model is the best yet at weather forecasting
    Headline Central | © 2024 | News