Photocatalytic low-temperature defluorination of PFASs – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Evich, M. G. et al. Per- and polyfluoroalkyl substances in the environment. Science 375, eabg9065 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Washington, J. W. et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science 368, 1103–1107 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, K., Kumar, N., Yadav, A. K., Singh, R. & Kumar, K. Per- and polyfluoroalkyl substances (PFAS) as a health hazard: current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chem. Eng. J. 475, 145065 (2023).

    Article 

    Google Scholar 

  • Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gaballah, S. et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ. Health Perspect. 128, 047005 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bentel, M. J. et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: reaction mechanisms and system efficiencies. Environ. Sci. Technol. 56, 3699–3709 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, J. et al. Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances. Nat. Water 1, 381–390 (2023).

    Article 
    ADS 

    Google Scholar 

  • Hao, S. et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam. Environ. Sci. Technol. 55, 3283–3295 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, N. et al. Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environ. Sci. Technol. Lett. 10, 198–203 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schaefer, C. E. et al. Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams. Environ. Sci. Technol. 52, 10689–10697 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, R. K. et al. Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor. Environ. Sci. Technol. 53, 11375–11382 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Baumgartner, R., Stieger, G. K. & McNeill, K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environ. Sci. Technol. 47, 6545–6553 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Douvris, C. & Ozerov, O. V. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science 321, 1188–1190 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Puts, G. J., Crouse, P. & Ameduri, B. M. Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer. Chem. Rev. 119, 1763–1805 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Améduri, B. & Hori, H. Recycling and the end of life assessment of fluoropolymers: recent developments, challenges and future trends. Chem. Soc. Rev. 52, 4208–4247 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Yang, X. et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem. Commun. 342–343 (2004).

  • Simon, C. M. & Kaminsky, W. Chemical recycling of polytetrafluoroethylene by pyrolysis. Polym. Degrad. Stab. 62, 1–7 (1998).

    Article 
    CAS 

    Google Scholar 

  • Ellis, D. A., Mabury, S. A., Martin, J. W. & Muir, D. C. G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412, 321–324 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Koch, E.-C. Metal‐Fluorocarbon Based Energetic Materials (Wiley, 2011).

  • Nelson, E., Kilduff, T. J. & Benderly, A. A. Bonding of Teflon. Ind. Eng. Chem. 50, 329–330 (1958).

    Article 
    CAS 

    Google Scholar 

  • Yoshino, K. et al. Conducting polymer prepared from teflon. Jpn. J. Appl. Phys. 21, L301–L302 (1982).

    Article 

    Google Scholar 

  • Chakrabarti, N. & Jacobus, J. The chemical reduction of poly(tetrafluoroethylene). Macromolecules 21, 3011–3014 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Costello, C. A. & McCarthy, T. J. Surface modification of poly(tetrafluoroethylene) with benzoin dianion. Macromolecules 17, 2940–2942 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Costello, C. A. & McCarthy, T. J. Surface-selective introduction of specific functionalities onto poly(tetrafluoroethylene). Macromolecules 20, 2819–2828 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kavan, L., Dousek, F. P., Janda, P. & Weber, J. Carbonization of highly oriented poly(tetrafluoroethylene). Chem. Mater. 11, 329–335 (1999).

    Article 
    CAS 

    Google Scholar 

  • Sheldon, D. J., Parr, J. M. & Crimmin, M. R. Room temperature defluorination of poly(tetrafluoroethylene) by a magnesium reagent. J. Am. Chem. Soc. 145, 10486–10490 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y., Kim, D. & Teets, T. S. Photophysical properties and redox potentials of photosensitizers for organic photoredox transformations. Synlett 33, 1154–1179 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liang, K. et al. Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light. Chem. Sci. 11, 6996–7002 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kim, H., Kim, H., Lambert, T. H. & Lin, S. Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potential. J. Am. Chem. Soc. 142, 2087–2092 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, S., Schiel, F. & Melchiorre, P. A general light-driven organocatalytic platform for the activation of inert substrates. Angew. Chem. Int. Ed. 62, e202306364 (2023).

    Article 
    CAS 

    Google Scholar 

  • Halder, S., Mandal, S., Kundu, A., Mandal, B. & Adhikari, D. Super-reducing behavior of benzo[b]phenothiazine anion under visible-light photoredox condition. J. Am. Chem. Soc. 145, 22403–22412 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–81 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cole, J. P. et al. Organocatalyzed birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, Z. F. et al. Iridium-catalyzed cyclization of isoxazolines and alkenes: divergent access to pyrrolidines, pyrroles, and carbazoles. Org. Lett. 18, 5672–5675 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luan, Z. H., Qu, J. P. & Kang, Y. B. Discovery of oxygen α-nucleophilic addition to α,β-unsaturated amides catalyzed by redox-neutral organic photoreductant. J. Am. Chem. Soc. 142, 20942–20947 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. D., Yang, B., Zhang, H., Qu, J. P. & Kang, Y. B. Reductive cleavage of C–X or N–S bonds catalyzed by super organoreductant CBZ6. Org. Lett. 25, 816–820 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yabuta, T., Hayashi, M. & Matsubara, R. Photocatalytic reductive C–O bond cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate. J. Org. Chem. 86, 2545–2555 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sap, J. B. I. et al. Organophotoredox hydrodefluorination of trifluoromethylarenes with translational applicability to drug discovery. J. Am. Chem. Soc. 142, 9181–9187 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, K., Berg, N., Gschwind, R. & König, B. Selective single C(sp3)–F bond cleavage in trifluoromethylarenes: merging visible-light catalysis with Lewis acid activation. J. Am. Chem. Soc. 139, 18444–18447 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. & Jui, N. T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes. J. Am. Chem. Soc. 140, 163–166 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Picheau, E., Amar, S., Derré, A., Pénicaud, A. & Hof, F. An introduction to the combustion of carbon materials. Chem. Eur. J. 28, e202200117 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patrick, J. S., Pradeep, T., Luo, H., Ma, S. & Cooks, R. G. Gas-phase C-F bond cleavage in perfluorohexane using W-, Si-, P-, Br-, and I-containing ions: comparisons with reactions at fluorocarbon surfaces. J. Am. Soc. Mass. Spectrom. 9, 1158–1167 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Vogt, D. B., Seath, C. P., Wang, H. & Jui, N. T. Selective C–F functionalization of unactivated trifluoromethylarenes. J. Am. Chem. Soc. 141, 13203–13211 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, M. W. et al. Photochemical C–F activation enables defluorinative alkylation of trifluoroacetates and -acetamides. J. Am. Chem. Soc. 143, 19648–19654 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, J. H., Bellotti, P., Heusel, C. & Glorius, F. Photoredox-catalyzed defluorinative functionalizations of polyfluorinated aliphatic amides and esters. Angew. Chem. Int. Ed. 61, e202115456 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nagai, Y., Smith, R. L.Jr., Inomata, H. & Arai, K. Direct observation of polyvinylchloride degradation in water at temperatures up to 500°C and at pressures up to 700 MPa. J. Appl. Polym. Sci. 106, 1075–1086 (2007).

    Article 
    CAS 

    Google Scholar 

  • Campbell, S. F., Stephens, R. & Tatlow, J. C. Perfluorocycloalkenyl-lithium compounds. Chem. Commun. 151–152 (1967).

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Overshooting global-warming limits is a risky idea
    Overshooting global-warming limits is a risky idea
    Hopes, fears and uncertainty: life scientists react to Trump’s election victory
    Hopes, fears and uncertainty: life scientists react to Trump’s election victory
    Alternative meat could help the climate. Will anyone eat it?
    Alternative meat could help the climate. Will anyone eat it?
    Falling enrolments and funding cuts force Australian universities to take stock
    Falling enrolments and funding cuts force Australian universities to take stock
    A thaw in scientific relations could help clear the air in India and Pakistan
    A thaw in scientific relations could help clear the air in India and Pakistan
    Scientific figures that pop: resources for the artistically challenged
    Scientific figures that pop: resources for the artistically challenged
    Headline Central | © 2024 | News