Realization of 2D metals at the ångström thickness limit – Nature

Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018).
Google Scholar
Gou, J. et al. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature 617, 67–72 (2023).
Google Scholar
Briggs, N. et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).
Google Scholar
Xing, Y. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 350, 542–545 (2015).
Google Scholar
Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).
Google Scholar
Maniyara, R. A. et al. Tunable plasmons in ultrathin metal films. Nat. Photon. 13, 328–333 (2019).
Google Scholar
Zhu, F.-f et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).
Google Scholar
Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).
Google Scholar
Chen, L. et al. Exceptional electronic transport and quantum oscillations in thin bismuth crystals grown inside van der Waals materials. Nat. Mater. 23, 741–746 (2024).
Google Scholar
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Google Scholar
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Google Scholar
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).
Google Scholar
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).
Google Scholar
Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).
Google Scholar
Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).
Google Scholar
Rotkin, S. V. & Hess, K. Possibility of a metallic field-effect transistor. Appl. Phys. Lett. 84, 3139–3141 (2004).
Google Scholar
Steves, M. A. et al. Unexpected near-infrared to visible nonlinear optical properties from 2-D polar metals. Nano Lett. 20, 8312–8318 (2020).
Google Scholar
Jin, K.-H., Oh, E., Stania, R., Liu, F. & Yeom, H. W. Enhanced Berry curvature dipole and persistent spin texture in the Bi(110) monolayer. Nano Lett. 21, 9468–9475 (2021).
Google Scholar
Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).
Google Scholar
Shao, Y. et al. Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene. Nano Lett. 18, 2133–2139 (2018).
Google Scholar
Fang, A. et al. Bursting at the seams: rippled monolayer bismuth on NbSe2. Sci. Adv. 4, eaaq0330 (2018).
Google Scholar
Wu, X. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 29, 1605407 (2017).
Google Scholar
Huang, L. et al. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 99, 163107 (2011).
Google Scholar
Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2014).
Google Scholar
Hussain, N. et al. Ultrathin Bi nanosheets with superior photoluminescence. Small 13, 1701349 (2017).
Google Scholar
Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).
Google Scholar
Jiang, K. et al. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth. 2, 58–66 (2023).
Google Scholar
Singh, S. et al. Low-energy phases of Bi monolayer predicted by structure search in two dimensions. J. Phys. Chem. Lett. 10, 7324–7332 (2019).
Google Scholar
Lu, Y. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 15, 80–87 (2015).
Google Scholar
Kittel, C. & McEuen, P. Introduction to Solid State Physics (Wiley, 2018).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Google Scholar
Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).
Google Scholar
Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).
Google Scholar
Wu, F. et al. Giant correlated gap and possible room-temperature correlated states in twisted bilayer MoS2. Phys. Rev. Lett. 131, 256201 (2023).
Google Scholar
Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 13, 5465 (2022).
Google Scholar
Du, L. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024).
Google Scholar
Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).
Google Scholar
Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).
Google Scholar
Lannin, J. S., Calleja, J. M. & Cardona, M. Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As. Phys. Rev. B 12, 585–593 (1975).
Google Scholar
Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).
Google Scholar
Balan, A. P. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164–200 (2022).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar