Realization of 2D metals at the ångström thickness limit – Nature

You May Be Interested In:Why the world is looking to ditch US AI models


  • Chen, Y. et al. Two-dimensional metal nanomaterials: synthesis, properties, and applications. Chem. Rev. 118, 6409–6455 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Gou, J. et al. Two-dimensional ferroelectricity in a single-element bismuth monolayer. Nature 617, 67–72 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Briggs, N. et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Xing, Y. et al. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films. Science 350, 542–545 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Jäck, B. et al. Observation of a Majorana zero mode in a topologically protected edge channel. Science 364, 1255–1259 (2019).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Maniyara, R. A. et al. Tunable plasmons in ultrathin metal films. Nat. Photon. 13, 328–333 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhu, F.-f et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ji, J. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 7, 13352 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, L. et al. Exceptional electronic transport and quantum oscillations in thin bismuth crystals grown inside van der Waals materials. Nat. Mater. 23, 741–746 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rotkin, S. V. & Hess, K. Possibility of a metallic field-effect transistor. Appl. Phys. Lett. 84, 3139–3141 (2004).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Steves, M. A. et al. Unexpected near-infrared to visible nonlinear optical properties from 2-D polar metals. Nano Lett. 20, 8312–8318 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, K.-H., Oh, E., Stania, R., Liu, F. & Yeom, H. W. Enhanced Berry curvature dipole and persistent spin texture in the Bi(110) monolayer. Nano Lett. 21, 9468–9475 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Reis, F. et al. Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material. Science 357, 287–290 (2017).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Shao, Y. et al. Epitaxial growth of flat antimonene monolayer: a new honeycomb analogue of graphene. Nano Lett. 18, 2133–2139 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Fang, A. et al. Bursting at the seams: rippled monolayer bismuth on NbSe2. Sci. Adv. 4, eaaq0330 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, X. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 29, 1605407 (2017).

    Article 

    Google Scholar 

  • Huang, L. et al. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 99, 163107 (2011).

    Article 
    ADS 

    Google Scholar 

  • Calleja, F. et al. Spatial variation of a giant spin–orbit effect induces electron confinement in graphene on Pb islands. Nat. Phys. 11, 43–47 (2014).

    Article 
    MATH 

    Google Scholar 

  • Hussain, N. et al. Ultrathin Bi nanosheets with superior photoluminescence. Small 13, 1701349 (2017).

    Article 
    MATH 

    Google Scholar 

  • Li, L. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 15, 1825 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jiang, K. et al. Mechanical cleavage of non-van der Waals structures towards two-dimensional crystals. Nat. Synth. 2, 58–66 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Singh, S. et al. Low-energy phases of Bi monolayer predicted by structure search in two dimensions. J. Phys. Chem. Lett. 10, 7324–7332 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lu, Y. et al. Topological properties determined by atomic buckling in self-assembled ultrathin Bi(110). Nano Lett. 15, 80–87 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kittel, C. & McEuen, P. Introduction to Solid State Physics (Wiley, 2018).

  • Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Wu, F. et al. Giant correlated gap and possible room-temperature correlated states in twisted bilayer MoS2. Phys. Rev. Lett. 131, 256201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 13, 5465 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Du, L. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lannin, J. S., Calleja, J. M. & Cardona, M. Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As. Phys. Rev. B 12, 585–593 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Puthirath Balan, A. et al. Exfoliation of a non-van der Waals material from iron ore hematite. Nat. Nanotechnol. 13, 602–609 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Balan, A. P. et al. Non-van der Waals quasi-2D materials; recent advances in synthesis, emergent properties and applications. Mater. Today 58, 164–200 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Liver X receptor unlinks intestinal regeneration and tumorigenesis - Nature
    Liver X receptor unlinks intestinal regeneration and tumorigenesis – Nature
    Engineered receptors show how humans tell countless odour molecules apart
    Engineered receptors show how humans tell countless odour molecules apart
    How Silicon Valley is disrupting democracy
    How Silicon Valley is disrupting democracy
    I track changes in the Arctic Ocean to help manage its future
    I track changes in the Arctic Ocean to help manage its future
    Daily briefing: Climate scientists determined to rise to the challenge of Trump 2.0
    Daily briefing: Climate scientists determined to rise to the challenge of Trump 2.0
    Smart insulin switches itself off in response to low blood sugar
    Smart insulin switches itself off in response to low blood sugar
    Headline Central | © 2025 | News