Robust chemical analysis with graphene chemosensors and machine learning – Nature
Bergveld, P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans. Biomed. Eng. BME-17, 70–71 (1970).
Google Scholar
Bergveld, P. Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sens. Actuators B Chem. 88, 1–20 (2003).
Google Scholar
Bergveld, P. Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. 19, 342–351 (1972).
Google Scholar
Fu, W., Jiang, L., van Geest, E. P., Lima, L. M. C. & Schneider, G. F. Sensing at the surface of graphene field‐effect transistors. Adv. Mater. 29, 1603610 (2017).
Google Scholar
Saba, G. K. et al. The development and validation of a profiling glider deep ISFET-based pH sensor for high resolution observations of coastal and ocean acidification. Front. Mar. Sci. 6, 664 (2019).
Google Scholar
Margarit-Taulé, J. M., Martín-Ezquerra, M., Escudé-Pujol, R., Jiménez-Jorquera, C. & Liu, S.-C. Cross-compensation of FET sensor drift and matrix effects in the industrial continuous monitoring of ion concentrations. Sens. Actuators B Chem. 353, 131123 (2022).
Google Scholar
Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).
Google Scholar
Weston, M., Geng, S. & Chandrawati, R. Food sensors: challenges and opportunities. Adv. Mater. Technol. 6, 2001242 (2021).
Google Scholar
Xue, M. et al. Integrated biosensor platform based on graphene transistor arrays for real-time high-accuracy ion sensing. Nat. Commun. 13, 5064 (2022).
Google Scholar
Fakih, I. et al. Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nat. Commun. 11, 3226 (2020).
Google Scholar
Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
Google Scholar
Treuting, R. G. & Arnold, S. M. Orientation habits of metal whiskers. Acta Metall. 5, 598 (1957).
Google Scholar
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Google Scholar
Heller, I. et al. Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. J. Am. Chem. Soc. 132, 17149–17156 (2010).
Google Scholar
Ang, P. K., Chen, W., Wee, A. T. S. & Loh, K. P. Solution-gated epitaxial graphene as pH sensor. J. Am. Chem. Soc. 130, 14392–14393 (2008).
Google Scholar
Knopfmacher, O. et al. Nernst Limit in Dual-Gated Si-Nanowire FET Sensors. Nano Lett. 10, 2268–2274 (2010).
Google Scholar
Wang, K. et al. Carbon nanotube field-effect transistor based pH sensors. Carbon 205, 540–545 (2023).
Google Scholar
Fu, W. et al. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization. Nanoscale 5, 12104–12110 (2013).
Google Scholar
Shang, X., Park, C. H., Jung, G. Y., Kwak, S. K. & Oh, J. H. Highly enantioselective graphene-based chemical sensors prepared by chiral noncovalent functionalization. ACS Appl. Mater. Interfaces 10, 36194–36201 (2018).
Google Scholar
Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
Google Scholar
Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Lett. 9, 3318–3322 (2009).
Google Scholar
Lei, N., Li, P., Xue, W. & Xu, J. Simple graphene chemiresistors as pH sensors: fabrication and characterization. Meas. Sci. Technol. 22, 107002 (2011).
Google Scholar
Lee, M. H. et al. Apparent pH sensitivity of solution-gated graphene transistors. Nanoscale 7, 7540–7544 (2015).
Google Scholar
Jung, S.-H. et al. Super-Nernstian pH sensor based on anomalous charge transfer doping of defect-engineered graphene. Nano Lett. 21, 34–42 (2021).
Google Scholar
Mailly-Giacchetti, B. et al. pH sensing properties of graphene solution-gated field-effect transistors. J. Appl. Phys. 114, 084505 (2013).
Google Scholar
Gao, J. et al. Graphene-based field-effect transistors integrated with microfluidic chip for real-time pH monitoring of seawater. J. Mater. Sci., Mater. Electron. 31, 15372–15380 (2020).
Google Scholar
Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. Chem. 243, 337–382 (1879).
Google Scholar
Gouy, M. Sur la constitution de la charge électrique à la surface d’un électrolyte. J. Phys. Theor. Appl. 9, 457–468 (1910).
Google Scholar
Chapman, D. L. LI. A contribution to the theory of electrocapillarity. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 25, 475–481 (1913).
Google Scholar
Wang, Z. L. & Wang, A. C. On the origin of contact-electrification. Mater. Today 30, 34–51 (2019).
Google Scholar
Wu, J. Understanding the electric double-layer structure, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).
Google Scholar
Salvo, P. et al. Graphene-based devices for measuring pH. Sens. Actuators B Chem. 256, 976–991 (2018).
Google Scholar
Fu, W. et al. Graphene transistors are insensitive to pH changes in solution. Nano Lett. 11, 3597–3600 (2011).
Google Scholar
LeBow, N. et al. Real-time edge neuromorphic tasting from chemical microsensor arrays. Front. Neurosci. 15, 771480 (2021).
Google Scholar
Chang, K.-M., Chang, C.-T., Chao, K.-Y. & Lin, C.-H. A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors. Sensors 10, 4643–4654 (2010).
Google Scholar
Sinha, S. et al. Temperature and temporal drift compensation for Al2O3-gate ISFET-based pH sensor using machine learning techniques. Microelectron. J. 97, 104710 (2020).
Google Scholar
Larose, D. T. & Larose, C. D. in Discovering Knowledge in Data: An Introduction to Data Mining 149–164 (Wiley, 2014).
Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989).
Google Scholar
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st International Conference on Neural Information Processing Systems Vol. 30, 4768–4777 (ACM, 2017).
Chauhan, S. L., Priyanka, Mandal, K. D., Paul, B. R. & Maji, C. Adulteration of milk: a review. Int. J. Chem. Stud. 7, 2055–2057 (2019).
Google Scholar
Techane, T. Effect of adulterants on quality and safety of cow milk: a review. Int. J. Diabetes Metab. Disord. 8, 277–287 (2023).
Das, S., Goswami, B. & Biswas, K. Milk adulteration and detection: a review. 14, 4–18 (2016).
Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V. & Georgiou, C. A. Food authentication: techniques, trends & emerging approaches. Trends Analt. Chem. 85, 123–132 (2016).
Google Scholar
Aung, M. M. & Chang, Y. S. Traceability in a food supply chain: safety and quality perspectives. Food Control 39, 172–184 (2014).
Google Scholar
Wang, Z., DeWitt, J. C., Higgins, C. P. & Cousins, I. T. A never-ending story of per- and polyfluoroalkyl substances (PFASs)? Environ. Sci. Technol. 51, 2508–2518 (2017).
Google Scholar
Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).
Google Scholar
Cousins, I. T. et al. The concept of essential use for determining when uses of PFASs can be phased out. Environ. Sci. Process. Impacts 21, 1803–1815 (2019).
Google Scholar