Sliding and healing of frictional interfaces that appear stationary – Nature

Rice, J. R. & Ruina, A. L. Stability of steady frictional slipping. J. Appl. Mech. 50, 343–349 (1983).
Google Scholar
Dieterich, J. H. in Treatise on Geophysics 2nd edn (ed. Schubert, G.) Vol. 4, 93–110 (Elsevier, 2007).
Ampuero, J.-P. & Rubin, A. M. Earthquake nucleation on rate and state faults – aging and slip laws. J. Geophys. Res. Solid Earth 113, 2007JB005082 (2008).
Google Scholar
Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2019).
Handwerger, A. L., Rempel, A. W., Skarbek, R. M., Roering, J. J. & Hilley, G. E. Rate-weakening friction characterizes both slow sliding and catastrophic failure of landslides. Proc. Natl Acad. Sci. USA 113, 10281–10286 (2016).
Google Scholar
Zoet, L. K. & Iverson, N. R. A healing mechanism for stick-slip of glaciers. Geology 46, 807–810 (2018).
Google Scholar
Thøgersen, K., Gilbert, A., Schuler, T. V. & Malthe-Sørenssen, A. Rate-and-state friction explains glacier surge propagation. Nat. Commun. 10, 2823 (2019).
Google Scholar
Kinkaid, N. M., O’Reilly, O. M. & Papadopoulos, P. Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003).
Google Scholar
Rabinowicz, E. Stick and slip. Sci. Am. 194, 109–119 (1956).
Google Scholar
Dowson, D. History of Tribology 2nd edn (Wiley, 1998).
Bhattacharya, P. & Viesca, R. C. Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364, 464–468 (2019).
Google Scholar
Lapusta, N., Rice, J. R., Ben‐Zion, Y. & Zheng, G. Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate‐ and state‐dependent friction. J. Geophys. Res. 105, 23765–23789 (2000).
Google Scholar
Rice, J. R., Lapusta, N. & Ranjith, K. Rate and state dependent friction and the stability of sliding between elastically deformable solids. J. Mech. Phys. Solids 49, 1865–1898 (2001).
Google Scholar
Dieterich, J. H. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601–2618 (1994).
Google Scholar
Marone, C. The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69–72 (1998).
Google Scholar
Bhattacharya, P., Rubin, A. M., Tullis, T. E., Beeler, N. M. & Okazaki, K. The evolution of rock friction is more sensitive to slip than elapsed time, even at near-zero slip rates. Proc. Natl Acad. Sci. USA 119, e2119462119 (2022).
Google Scholar
Rubino, V., Rosakis, A. J. & Lapusta, N. Understanding dynamic friction through spontaneously evolving laboratory earthquakes. Nat. Commun. 8, 15991 (2017).
Google Scholar
Rosakis, A. J., Rubino, V. & Lapusta, N. Recent milestones in unraveling the full-field structure of dynamic shear cracks and fault ruptures in real-time: from photoelasticity to ultrahigh-speed digital image correlation. J. Appl. Mech. 87, 030801 (2020).
Google Scholar
Leeman, J. R., Saffer, D. M., Scuderi, M. M. & Marone, C. Laboratory observations of slow earthquakes and the spectrum of tectonic fault slip modes. Nat. Commun. 7, 11104 (2016).
Google Scholar
Gvirtzman, S. & Fineberg, J. Nucleation fronts ignite the interface rupture that initiates frictional motion. Nat. Phys. 17, 1037–1042 (2021).
Google Scholar
Ruina, A. Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983).
Google Scholar
Ader, T. J., Lapusta, N., Avouac, J.-P. & Ampuero, J.-P. Response of rate-and-state seismogenic faults to harmonic shear-stress perturbations. Geophys. J. Int. 198, 385–413 (2014).
Google Scholar
Sirorattanakul, K. et al. The 2020 Westmorland, California earthquake swarm as aftershocks of a slow slip event sustained by fluid flow. J. Geophys. Res. Solid Earth 127, e2022JB024693 (2022).
Google Scholar
Acosta, M. et al. Earthquake nucleation characteristics revealed by seismicity response to seasonal stress variations induced by gas production at Groningen. Geophys. Res. Lett. 50, e2023GL105455 (2023).
Google Scholar
Heimisson, E. R., Smith, J. D., Avouac, J.-P. & Bourne, S. J. Coulomb threshold rate-and-state model for fault reactivation: application to induced seismicity at Groningen. Geophys. J. Int. 228, 2061–2072 (2022).
Google Scholar
Dieterich, J. H. Modeling of rock friction: 1. Experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979).
Google Scholar
Marone, C. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26, 643–696 (1998).
Google Scholar
Rabinowicz, E. The nature of the static and kinetic coefficients of friction. J. Appl. Phys 22, 1373–1379 (1951).
Google Scholar
Gu, J.-C., Rice, J. R., Ruina, A. L. & Tse, S. T. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction. J. Mech. Phys. Solids 32, 167–196 (1984).
Google Scholar
Daub, E. G. & Carlson, J. M. A constitutive model for fault gouge deformation in dynamic rupture simulations. J. Geophys. Res. Solid Earth 113, 2007JB005377 (2008).
Google Scholar
Rubino, V., Rosakis, A. J. & Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 59, 551–582 (2019).
Google Scholar
Sutton, M. A., Orteu, J.-J. & Schreier, H. W. Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).
Beeler, N. M., Tullis, T. E. & Weeks, J. D. The roles of time and displacement in the evolution effect in rock friction. Geophys. Res. Lett. 21, 1987–1990 (1994).
Google Scholar
Barbot, S., Lapusta, N. & Avouac, J.-P. Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle. Science 336, 707–710 (2012).
Google Scholar
Lacroix, P., Handwerger, A. L. & Bièvre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 1, 404–419 (2020).
Google Scholar
Dempsey, D. & Suckale, J. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophys. Res. Lett. 44, 7773–7782 (2017).
Google Scholar
Ida, Y. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J. Geophys. Res. 77, 3796–3805 (1972).
Google Scholar
Palmer, A. C. & Rice, J. R. The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc. R. Soc. Lond. A 332, 527–548 (1973).
Google Scholar
Freund, L. B. Dynamic Fracture Mechanics (Cambridge Univ. Press, 1990).
Ohnaka, M. A constitutive scaling law and a unified comprehension for frictional slip failure, shear fracture of intact rock, and earthquake rupture. J. Geophys. Res. 108, 2000JB000123 (2003).
Google Scholar
Xia, K., Rosakis, A. J. & Kanamori, H. Laboratory Earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303, 1859–1861 (2004).
Google Scholar
Nakatani, M. Conceptual and physical clarification of rate and state friction: frictional sliding as a thermally activated rheology. J. Geophys. Res 106, 13347–13380 (2001).
Google Scholar
Marone, C. J., Scholtz, C. H. & Bilham, R. On the mechanics of earthquake afterslip. J. Geophys. Res. Solid Earth 96, 8441–8452 (1991).
Google Scholar
Bürgmann, R. et al. Earthquake potential along the Northern Hayward Fault, California. Science 289, 1178–1182 (2000).
Google Scholar
Perfettini, H. et al. Seismic and aseismic slip on the Central Peru megathrust. Nature 465, 78–81 (2010).
Google Scholar
Lu, X., Lapusta, N. & Rosakis, A. J. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proc. Natl Acad. Sci. USA 104, 18931–18936 (2007).
Google Scholar
Gori, M., Rubino, V., Rosakis, A. J. & Lapusta, N. Dynamic rupture initiation and propagation in a fluid-injection laboratory setup with diagnostics across multiple temporal scales. Proc. Natl Acad. Sci. USA 118, e2023433118 (2021).
Google Scholar
Rubino, V., Lapusta, N. & Rosakis, A. J. Intermittent lab earthquakes in dynamically weakening fault gouge. Nature 606, 922–929 (2022).
Google Scholar
Shearer, P. M. Introduction to Seismology (Cambridge Univ. Press, 2019).
Chester, F. M. & Chester, J. S. Ultracataclasite structure and friction processes of the Punchbowl fault, San Andreas system, California. Tectonophysics 295, 199–221 (1998).
Google Scholar
Mello, M. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. PhD dissertation (California Institute of Technology, 2012).
Mello, M., Bhat, H. S., Rosakis, A. J. & Kanamori, H. Identifying the unique ground motion signatures of supershear earthquakes: theory and experiments. Tectonophysics 493, 297–326 (2010).
Google Scholar
Rubino, V., Rosakis, A. J. & Lapusta, N. Spatiotemporal properties of sub‐Rayleigh and supershear ruptures inferred from full‐field dynamic imaging of laboratory experiments. J. Geophys. Res. Solid Earth 125, e2019JB018922 (2020).
Google Scholar
Tal, Y., Rubino, V., Rosakis, A. J. & Lapusta, N. Illuminating the physics of dynamic friction through laboratory earthquakes on thrust faults. Proc. Natl Acad. Sci. USA 117, 21095–21100 (2020).
Google Scholar
Lattanzi, A. et al. Uncertainty analysis of dynamic rupture measurements obtained through ultrahigh-speed digital image correlation. Exp. Mech. 63, 529–563 (2023).
Google Scholar
Tullis, T. E. & Weeks, J. D. Constitutive behavior and stability of frictional sliding of granite. Pure Appl. Geophys. 124, 383–414 (1986).
Google Scholar
Blanpied, M. L., Lockner, D. A. & Byerlee, J. D. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100, 13045–13064 (1995).
Google Scholar
Marone, C., Raleigh, C. B. & Scholz, C. H. Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res. 95, 7007–7025 (1990).
Google Scholar
Segall, P. & Rice, J. R. Dilatancy, compaction, and slip instability of a fluid‐infiltrated fault. J. Geophys. Res. 100, 22155–22171 (1995).
Google Scholar
Hulikal, S., Lapusta, N. & Bhattacharya, K. Static and sliding contact of rough surfaces: effect of asperity-scale properties and long-range elastic interactions. J. Mech. Phys. Solids 116, 217–238 (2018).
Google Scholar
Dieterich, J. H. & Kilgore, B. D. Direct observation of frictional contacts: new insights for state-dependent properties. Pure Appl. Geophys. 143, 283–302 (1994).
Google Scholar
Berthoud, P., Baumberger, T., G’Sell, C. & Hiver, J.-M. Physical analysis of the state- and rate-dependent friction law: static friction. Phys. Rev. B 59, 14313–14327 (1999).
Google Scholar
Ben-David, O., Rubinstein, S. M. & Fineberg, J. Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010).
Google Scholar
Ikari, M. J., Carpenter, B. M. & Marone, C. A microphysical interpretation of rate‐ and state‐dependent friction for fault gouge. Geochem. Geophys. Geosyst. 17, 1660–1677 (2016).
Google Scholar
Perfettini, H. & Molinari, A. A micromechanical model of rate and state friction: 1. Static and dynamic sliding. J. Geophys. Res. Solid Earth 122, 2590–2637 (2017).
Google Scholar
Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233–236 (2011).
Google Scholar
Dieterich, J. H. in Mechanical Behavior of Crustal Rocks: The Handin Volume Geophysical Monograph Series, Vol. 24 (eds Carter, N. L. et al.) 103–120 (American Geophysical Union, 1981).
Stesky, R. M. Rock friction-effect of confining pressure, temperature, and pore pressure. Pure Appl. Geophys. 116, 690–704 (1978).
Google Scholar
Brechet, Y. & Estrin, Y. The effect of strain rate sensitivity on dynamic friction of metals. Scr. Metall. Mater. 30, 1449–1454 (1994).
Google Scholar
Chester, F. M. Effects of temperature on friction: constitutive equations and experiments with quartz gouge. J. Geophys. Res. 99, 7247–7261 (1994).
Google Scholar
Heslot, F., Baumberger, T., Perrin, B., Caroli, B. & Caroli, C. Creep, stick-slip, and dry-friction dynamics: experiments and a heuristic model. Phys. Rev. E 49, 4973–4988 (1994).
Google Scholar
Sleep, N. H. Application of a unified rate and state friction theory to the mechanics of fault zones with strain localization. J. Geophys. Res. 102, 2875–2895 (1997).
Google Scholar
Baumberger, T. Contact dynamics and friction at a solid-solid interface: material versus statistical aspects. Solid State Commun. 102, 175–185 (1997).
Google Scholar
Persson, B. N. J. On the theory of rubber friction. Surf. Sci. 401, 445–454 (1998).
Google Scholar
Perfettini, H. & Avouac, J.-P. Postseismic relaxation driven by brittle creep: a possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).