Stronger and coarser-grained biodegradable zinc alloys – Nature

Drelich, A. J., Zhao, S., Guillory, R. J. II, Drelich, J. W. & Goldman, J. Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate. Acta Biomater. 58, 539–549 (2017).
Google Scholar
Yang, H. et al. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 145, 92–105 (2017).
Google Scholar
Han, H.-S. et al. Current status and outlook on the clinical translation of biodegradable metals. Mater. Today 23, 57–71 (2019).
Google Scholar
Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).
Google Scholar
Yang, H. et al. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 11, 401 (2020).
Google Scholar
Zhu, S., Wu, C., Li, G., Zheng, Y. & Nie, J.-F. Microstructure, mechanical properties and creep behaviour of extruded Zn-xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications. Mater. Sci. Eng. A 777, 139082 (2020).
Google Scholar
Barnett, M. R. Twinning and the ductility of magnesium alloys: Part I: “Tension” twins. Mater. Sci. Eng. A 464, 1–7 (2007).
Google Scholar
Nie, J. F., Shin, K. S. & Zeng, Z. R. Microstructure, deformation, and property of wrought magnesium alloys. Metall. Mater. Trans. A 51A, 6045–6109 (2020).
Google Scholar
Windhagen, H. et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed. Eng. Online 12, 62 (2013).
Google Scholar
Kacarevic, Z. P. et al. Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration. Bioact. Mater. 14, 15–30 (2022).
Google Scholar
Qiao, W. et al. Divalent metal cations stimulate skeleton interoception for new bone formation in mouse injury models. Nat. Commun. 13, 535 (2022).
Google Scholar
Li, H. F. et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 5, 10719 (2015).
Google Scholar
Shi, Z.-Z. et al. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8Mn alloy. Mater. Sci. Eng. C 99, 969–978 (2019).
Google Scholar
Yip, S. The strongest size. Nature 391, 532–533 (1998).
Google Scholar
Koike, J., Sato, Y. & Ando, D. Origin of the anomalous \(\{101\bar{2}\}\) twinning during tensile deformation of Mg alloy sheet. Mater. Trans. 49, 2792–2800 (2008).
Google Scholar
Suh, B.-C., Shim, M.-S., Kim, D.-W. & Kim, N. J. Twinning behavior of Mg–4Zn–1Gd alloy sheet during longitudinal tensile deformation. Scr. Mater. 69, 465–468 (2013).
Google Scholar
Christian, J. W. & Mahajan, S. Deformation twinning. Prog. Mater. Sci. 39, 1–157 (1995).
Google Scholar
Marek, R. et al. Degradation behavior and osseointegration of Mg–Zn–Ca screws in different bone regions of growing sheep: a pilot study. Regen. Biomater. 10, rbac077 (2023).
Google Scholar
Tromans, D. Elastic anisotropy of hcp metal crystals and polycrystals. Int. J. Res. Rev. Appl. Sci. 6, 462–483 (2011).
Google Scholar
Liu, H. et al. Variant selection of primary-secondary extension twin pairs in magnesium: an analytical calculation study. Acta Mater. 219, 117221 (2021).
Google Scholar
Yang, H. et al. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chem. Eng. J. 417, 129317 (2021).
Google Scholar
Xiao, X. et al. Investigation of zinc-silver alloys as biodegradable metals for orthopedic applications. J. Mater. Res. Technol. 26, 6287–6303 (2023).
Google Scholar
Diekmann, J. et al. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits. Mater. Sci. Eng. C 59, 1100–1109 (2016).
Google Scholar
Martinez, D. C. et al. Bone cells influence the degradation interface of pure Mg and WE43 materials: Insights from multimodal in vitro analysis. Acta Biomater. 187, 471–490 (2024).
Google Scholar
Lee, J.-W. et al. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc. Natl Acad. Sci. USA 113, 716–721 (2016).
Google Scholar
Cha, P.-R. et al. Biodegradability engineering of biodegradable Mg alloys: Tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 3, 2367 (2013).
Google Scholar
Okutan, B. et al. The combined effect of zinc and calcium on the biodegradation of ultrahigh-purity magnesium implants. Biomater. Adv. 146, 213287 (2023).
Google Scholar
Trumbo, P., Yates, A. A., Schlicker, S. & Poos, M. Dietary reference intakes. J. Am. Diet. Assoc. 101, 294–301 (2001).
Google Scholar
Wang, J. et al. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater. 21, 237–249 (2015).
Google Scholar
Kubásek, J., Dvorský, D., Čavojský, M., Roudnická, M. & Vojtěch, A. WE43 magnesium alloy – material for challenging applications. Metall. Mater. 57, 159–165 (2019).
Tolnai, D., et al. In situ synchrotron radiation study of the tension–compression asymmetry in an extruded Mg–2Y–1Zn–1Mn alloy. In Proc. Magnesium Technology 2022 (Maier, P. et al., eds), 143–148 (Springer, 2022).
Li, H. et al. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 83, 95–102 (2015).
Google Scholar
Pinc, J. et al. Microstructure evolution and mechanical performance of ternary Zn-0.8Mg-0.2Sr (wt. %) alloy processed by equal-channel angular pressing. Mater. Sci. Eng. A 824, 141809 (2021).
Google Scholar
Labmayr, V. et al. Mg–Zn–Ca alloy (ZX00) screws are resorbed at a mean of 2.5 years after medial malleolar fracture fixation: follow-up of a first-in-humans application and insights from a sheep model. Clin. Orthop. Relat. Res. 482, 184–197 (2024).
Google Scholar