Targeting immune–fibroblast cell communication in heart failure – Nature

You May Be Interested In:The startup trying to turn the web into a database


  • Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutstein, D. E. & Fuster, V. Pathophysiology and clinical significance of atherosclerotic plaque rupture. Cardiovasc. Res. 41, 323–333 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thygesen, K. et al. Third universal definition of myocardial infarction. Circulation 126, 2020–2035 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell. Cardiol. 114, 161–174 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forte, E. et al. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. https://doi.org/10.1016/j.celrep.2020.02.008 (2020).

  • Martini, E. et al. Single-cell sequencing of mouse heart immune infiltrate in pressure overload–driven heart failure reveals extent of immune activation. Circulation 140, 2089–2107 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057–2071.e6 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsa, E., Burridge, P. W. & Wu, J. C. Human stem cells for modeling heart disease and for drug discovery. Sci. Transl. Med. 6, 239ps6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herum, K. M. et al. Cardiac fibroblast sub-types in vitro reflect pathological cardiac remodeling in vivo. Matrix Biol. Plus 15, 100113 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

  • Amrute, J. M. et al. Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nat. Commun. 13, 882 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature https://doi.org/10.1038/S41586-022-04817-8 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reichart, D. et al. Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science 377, eabo1984 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods https://doi.org/10.1038/nmeth.4380 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trevino, A. E. et al. Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution. Cell 184, 5053–5069.e23 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature https://doi.org/10.1038/s41586-022-05060-x (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • RC, W. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

    Article 

    Google Scholar 

  • Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amrute, J. M. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat. Cardiovasc. Res. 2, 399–416 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alexanian, M. et al. Chromatin remodelling drives immune–fibroblast crosstalk in heart failure pathogenesis. Nature https://doi.org/10.1038/s41586-024-08085-6 (2024).

  • Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 1–31 (2022).

    Article 

    Google Scholar 

  • Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161–3171 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kadyrov, F. F. et al. Hypoxia sensing in resident cardiac macrophages regulates monocyte fate specification following ischemic heart injury. Preprint at bioRxiv https://doi.org/10.1101/2022.08.04.502542 (2023).

  • Koenig, A. L. et al. Genetic mapping of monocyte fate decisions following myocardial infarction. Preprint at bioRxiv https://doi.org/10.1101/2023.12.24.573263 (2023).

  • Strunk, M. et al. Toward quantitative multisite preclinical imaging studies in acute myocardial infarction: evaluation of the immune-fibrosis axis. J. Nucl. Med. 65, 287–293 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hall, C., Gehmlich, K., Denning, C. & Pavlovic, D. Complex relationship between cardiac fibroblasts and cardiomyocytes in health and disease. J. Am. Heart Assoc. 10, 1–15 (2021).

    Article 

    Google Scholar 

  • Xin, L. et al. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: a narrative review. Front. Oncol. 11, 3187 (2021).

    Article 

    Google Scholar 

  • Khalil, H. et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bujak, M. & Frangogiannis, N. G. The role of interleukin-1 in the pathogenesis of heart disease. Arch. Immunol. Ther. Exp. (Warsz.) 57, 165 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ikeuchi, M. et al. Inhibition of TGF-β signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc. Res. 64, 526–535 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mulè, M. P., Martins, A. J. & Tsang, J. S. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat. Commun. 13, 2099 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 1–15 (2019).

    Article 

    Google Scholar 

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Article 

    Google Scholar 

  • Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38, 1408–1414 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Engineered receptors show how humans tell countless odour molecules apart
    Engineered receptors show how humans tell countless odour molecules apart
    Examining the role of common variants in rare neurodevelopmental conditions - Nature
    Examining the role of common variants in rare neurodevelopmental conditions – Nature
    Postsynaptic competition between calcineurin and PKA regulates mammalian sleep–wake cycles - Nature
    Postsynaptic competition between calcineurin and PKA regulates mammalian sleep–wake cycles – Nature
    High-temperature 205Tl decay clarifies 205Pb dating in early Solar System - Nature
    High-temperature 205Tl decay clarifies 205Pb dating in early Solar System – Nature
    Raising a glass to the Four Friends Doing Science journal club
    Raising a glass to the Four Friends Doing Science journal club
    The cells that help the immune system fight lung cancer
    The cells that help the immune system fight lung cancer
    Headline Central | © 2024 | News