Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys. 53, 785–818 (2015).

    Article 
    ADS 

    Google Scholar 

  • Trabalka, J. R. Atmospheric Carbon Dioxide and the Global Carbon Cycle (US Department of Energy, 1986).

  • Bolin, B. & Fung, I. The Carbon Cycle Revisited Vol. 3 (University Corp. for Atmospheric Research, 1992).

  • Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ryu, Y., Berry, J. A. & Baldocchi, D. D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 223, 95–114 (2019).

    Article 
    ADS 

    Google Scholar 

  • Welp, L. R. et al. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477, 579–582 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jian, J. et al. Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle. Nat. Commun. 13, 1733 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article 
    ADS 

    Google Scholar 

  • Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang-Zheng, H. et al. Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nat. Commun. 15, 3158 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Canadell, J. G. et al. In Climate Change 2021: The Physical Science Basis (ed. Brovkin, V.) Ch. 5 (Cambridge Univ. Press, 2021).

  • Chen, M. et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 12, 105005 (2017).

    Article 
    ADS 

    Google Scholar 

  • Hilton, T. W. et al. Peak growing season gross uptake of carbon in North America is largest in the Midwest USA. Nat. Clim. Change 7, 450–454 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article 

    Google Scholar 

  • Berry, J. et al. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci. 118, 842–852 (2013).

    Article 
    CAS 

    Google Scholar 

  • Whelan, M. E. et al. Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 15, 3625–3657 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wehr, R. et al. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences 14, 389–401 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144 (2011).

    Article 
    ADS 

    Google Scholar 

  • Knauer, J. et al. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. Plant J. 101, 858–873 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 37, 978–994 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92, 10767–10776 (1987).

    Article 
    ADS 

    Google Scholar 

  • Ulshöfer, V. S., Flock, O. R., Uher, G. & Andreae, M. O. Photochemical production and air-sea exchange of carbonyl sulfide in the eastern Mediterranean Sea. Mar. Chem. 53, 25–39 (1996).

    Article 

    Google Scholar 

  • Sun, Y. et al. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl Acad. Sci. USA 111, 15774–15779 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kooijmans, L. M. J. et al. Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4). Biogeosciences 18, 6547–6565 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sun, W., Maseyk, K., Lett, C. & Seibt, U. Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh. Biogeosciences 15, 3277–3291 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maseyk, K. et al. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. Proc. Natl Acad. Sci. USA 111, 9064–9069 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kooijmans, L. M. J. et al. Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmos. Chem. Phys. 17, 11453–11465 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stimler, K., Berry, J. A., Montzka, S. A. & Yakir, D. Association between carbonyl sulfide uptake and 18D during gas exchange in C3 and C4 leaves. Plant Physiol. 157, 509–517 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Terashima, I., Hanba, Y. T., Tazoe, Y., Vyas, P. & Yano, S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57, 343–354 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niinemets, U., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60, 2249–2270 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S. & Long, S. P. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cano, F. J., López, R. & Warren, C. R. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ. 37, 2470–2490 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dillaway, D. N. & Kruger, E. L. Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ. 33, 888–899 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campbell, J. E. et al. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y. & Yakir, D. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 186, 869–878 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kooijmans, L. M. J. et al. Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proc. Natl Acad. Sci. USA 116, 2470–2475 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stimler, K., Berry, J. A. & Yakir, D. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance. Plant Physiol. 158, 524–530 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

  • Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article 
    ADS 

    Google Scholar 

  • Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 26, GB1019 (2012).

  • Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 186, 528–547 (2016).

    Article 
    ADS 

    Google Scholar 

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article 

    Google Scholar 

  • Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article 
    ADS 

    Google Scholar 

  • Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).

    Article 

    Google Scholar 

  • Restrepo-Coupe, N. et al. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob. Change Biol. 23, 191–208 (2017).

    Article 
    ADS 

    Google Scholar 

  • Worden, J. et al. Satellite observations of the tropical terrestrial carbon balance and interactions with the water cycle during the 21st century. Rev. Geophys. 59, e2020RG000711 (2021).

  • Kuai, L. et al. Quantifying northern high latitude gross primary productivity (GPP) using carbonyl sulfide (OCS). Glob. Biogeochem. Cycles 36, e2021GB007216 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Commane, R. et al. Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc. Natl Acad. Sci. USA 112, 14162–14167 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, J. et al. Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget. Atmos. Chem. Phys. 21, 3507–3529 (2021).

  • Badger, M. R. & Price, G. D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Biol. 45, 369–392 (1994).

    Article 
    CAS 

    Google Scholar 

  • Evans, J. R., Caemmerer, S. V., Setchell, B. A. & Hudson, G. S. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Funct. Plant Biol. 21, 475–495 (1994).

    Article 
    CAS 

    Google Scholar 

  • Ogée, J. et al. A new mechanistic framework to predict OCS fluxes from soils. Biogeosciences 13, 2221–2240 (2016).

    Article 
    ADS 

    Google Scholar 

  • Meredith, L. K. et al. Coupled biological and abiotic mechanisms driving carbonyl sulfide production in soils. Soil Systems 2, 37 (2018).

    Article 
    CAS 

    Google Scholar 

  • Meredith, L. K. et al. Soil exchange rates of COS and CO18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes. ISME J. 13, 290–300 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaisermann, A., Jones, S. P., Wohl, S., Ogée, J. & Wingate, L. Nitrogen fertilization reduces the capacity of soils to take up atmospheric carbonyl sulphide. Soil Systems 2, 62 (2018).

    Article 
    CAS 

    Google Scholar 

  • Deepagoda, T. K. K. C. et al. Density‐corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone J. 10, 226–238 (2011).

    Article 
    CAS 

    Google Scholar 

  • Millington, R. J. & Quirk, J. P. Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961).

    Article 
    CAS 

    Google Scholar 

  • Asaf, D. et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci. 6, 186–190 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Restrepo-Coupe, N. et al. LBA-ECO CD-32 flux tower network data compilation, Brazilian Amazon: 1999−2006, V2. ORNL DAAC (2021).

  • Wohlfahrt, G., Hammerle, A., Spielmann, F., Kitz, F. & Yi, C. Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory. Biogeosciences 20, 589–596 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wehr, R. et al. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534, 680–683 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Chemists make ‘impossible’ molecules that break 100-year-old bonding rule
    Chemists make ‘impossible’ molecules that break 100-year-old bonding rule
    OpenAI brings a new web search tool to ChatGPT
    OpenAI brings a new web search tool to ChatGPT
    AI tool helps people with opposing views find common ground
    AI tool helps people with opposing views find common ground
    Experts warn the US must do more to boost demand for carbon removal 
    Experts warn the US must do more to boost demand for carbon removal 
    The US election is monumental for science, say Nature readers — here’s why
    The US election is monumental for science, say Nature readers — here’s why
    Atomic smash-ups hold promise of record-breaking elements
    Atomic smash-ups hold promise of record-breaking elements
    Headline Central | © 2024 | News