Tissue spaces are reservoirs of antigenic diversity for Trypanosoma brucei – Nature
Magez, S. et al. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog. 4, e1000122 (2008).
Google Scholar
Cross, G. A. M., Kim, H. S. & Wickstead, B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol. Biochem. Parasitol. 195, 59–73 (2014).
Google Scholar
Müller, L. S. M. et al. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 563, 121–125 (2018).
Google Scholar
Hertz-Fowler, C. et al. Telomeric expression sites are highly conserved in Trypanosoma brucei. PLoS ONE 3, e3527 (2008).
Google Scholar
Cosentino, R. O., Brink, B. G. & Nicolai Siegel, T. Allele-specific assembly of a eukaryotic genome corrects apparent frameshifts and reveals a lack of nonsense-mediated mRNA decay. NAR Genom. Bioinform. 3, lqab082 (2021).
Google Scholar
Hall, J. P. J., Wang, H. & David Barry, J. Mosaic VSGs and the scale of Trypanosoma brucei antigenic variation. PLoS Pathog. 9, e1003502 (2013).
Google Scholar
Mugnier, M. R., Cross, G. A. M. & Papavasiliou, F. N. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science 347, 1470–1473 (2015).
Google Scholar
Jayaraman, S. et al. Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections. PLoS Negl. Trop. Dis. 13, e0007262 (2019).
Google Scholar
Capewell, P. et al. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. eLife 5, e17716 (2016).
Google Scholar
Camara, M. et al. Extravascular dermal trypanosomes in suspected and confirmed cases of gambiense human African trypanosomiasis. Clin. Infect. Dis. 73, 12–20 (2021).
Google Scholar
Trindade, S. et al. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe https://doi.org/10.1016/j.chom.2016.05.002 (2016).
Carvalho, T. et al. Trypanosoma brucei triggers a marked immune response in male reproductive organs. PLoS Negl. Trop. Dis. https://doi.org/10.1371/journal.pntd.0006690 (2018).
De Niz, M. et al. Organotypic endothelial adhesion molecules are key for Trypanosoma brucei tropism and virulence. Cell Rep 36, 109741 (2021).
Google Scholar
Control and Surveillance of Human African Trypanosomiasis: Report of a WHO Expert Committee. WHO Technical Report Series (WHO, 2013).
Crilly, N. P. & Mugnier, M. R. Thinking outside the blood: perspectives on tissue-resident Trypanosoma brucei. PLoS Pathog. 17, e1009866 (2021).
Google Scholar
Kamper, S. M. & Barbet, A. F. Surface epitope variation via mosaic gene formation is potential key to long-term survival of Trypanosoma brucei. Mol. Biochem. Parasitol. 53, 33–44 (1992).
Google Scholar
Seed, J. R. & Effron, H. G. Simultaneous presence of different antigenic populations of Trypanosoma brucei gambiense in Microtus montanus. Parasitology 66, 269–278 (1973).
Google Scholar
Seed, J. R., Edwards, R. & Sechelski, J. The ecology of antigenic variation. J. Protozool. 31, 48–53 (1984).
Google Scholar
Barry, J. D. & Emery, D. L. Parasite development and host responses during the establishment of Trypanosoma brucei infection transmitted by tsetse fly. Parasitology 88, 67–84 (1984).
Google Scholar
Tanner, M., Jenni, L., Hecker, H. & Brun, R. Characterization of Trypanosoma brucei isolated from lymph nodes of rats. Parasitology 80, 383–391 (1980).
Google Scholar
Vickerman, K. Trypanosome sociology and antigenic variation. Parasitology 99, S37–S47 (1989).
Google Scholar
Barry, J. D. & Turner, C. M. R. The dynamics of antigenic variation and growth of African trypanosomes. Parasitol. Today 7, 207–211 (1991).
Google Scholar
Engstler, M. & Boshart, M. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev. 18, 2798–2811 (2004).
Google Scholar
Turner, C. M., Hunter, C. A., Barry, J. D. & Vickerman, K. Similarity in variable antigen type composition of Trypanosoma brucei Rhodesiense populations in different sites within the mouse host. Trans. R. Soc. Trop. Med. Hyg. 80, 824–830 (1986).
Google Scholar
Turner, C. M. R. & Barry, J. D. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 99, 67–75 (1989).
Google Scholar
Salanti, A. et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 200, 1197–1203 (2004).
Google Scholar
Duffy, P. E. & Fried, M. Plasmodium falciparum adhesion in the placenta. Curr. Opin. Microbiol. 6, 371–376 (2003).
Google Scholar
Jonsson, A. ‐B., Ilver, D., Falk, P., Pepose, J. & Normark, S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 13, 403–416 (1994).
Google Scholar
Nassif, X. et al. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol. Microbiol. 8, 719–725 (1993).
Google Scholar
Rudel, T., van Putten, J. P. M., Gibbs, C. P., Haas, R. & Meyer, T. F. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol. 6, 3439–3450 (1992).
Google Scholar
Virji, M. & Heckels, J. E. The role of common and type-specific pilus antigenic domains in adhesion and virulence of gonococci for human epithelial cells. J. Gen. Microbiol. 130, 1089–1095 (1984).
Google Scholar
Dean, S., Marchetti, R., Kirk, K. & Matthews, K. R. A surface transporter family conveys the trypanosome differentiation signal. Nature 459, 213–217 (2009).
Google Scholar
McWilliam, K. R. et al. High-resolution scRNA-seq reveals genomic determinants of antigen expression hierarchy in African Trypanosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586247 (2024).
Smith, J. E. et al. DNA damage drives antigen diversification through mosaic VSG formation in Trypanosoma brucei. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.582209 (2024).
Calvo-Alvarez, E., Cren-Travaillé, C., Crouzols, A. & Rotureau, B. A new chimeric triple reporter fusion protein as a tool for in vitro and in vivo multimodal imaging to monitor the development of African trypanosomes and Leishmania parasites. Infect. Genet. Evol. 63, 391–403 (2018).
Google Scholar
Hutchinson, S. et al. The establishment of variant surface glycoprotein monoallelic expression revealed by single-cell RNA-seq of Trypanosoma brucei in the tsetse fly salivary glands. PLoS Pathog. 17, e1009904 (2021).
Google Scholar
Savage, A. F. et al. Transcript expression analysis of putative Trypanosoma brucei GPI-anchored surface proteins during development in the tsetse and mammalian hosts. PLoS Negl. Trop. Dis. 6, 1708 (2012).
Google Scholar
Schopf, L. R., Filutowicz, H., Bi, X. J. & Mansfield, J. M. Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein. Infect. Immun. 66, 451 (1998).
Google Scholar
Liu, G. et al. Distinct contributions of CD4+ and CD8+ T cells to pathogenesis of trypanosoma brucei infection in the context of gamma interferon and interleukin-10. Infect. Immun. 83, 2785–2795 (2015).
Google Scholar
Reinitz, D. M. & Mansfield, J. M. T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect. Immun. 58, 2337–2342 (1990).
Google Scholar
Radwanska, M. et al. Comparative analysis of antibody responses against HSP60, invariant surface glycoprotein 70, and variant surface glycoprotein reveals a complex antigen-specific pattern of immunoglobulin isotype switching during infection by Trypanosoma brucei. Infect. Immun. 68, 848–860 (2000).
Google Scholar
Robbiani, D. F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).
Google Scholar
Hector, R. F., Collins, M. S. & Pennington, J. E. Treatment of experimental Pseudomonas aeruginosa pneumonia with a human IgM monoclonal antibody. J. Infect. Dis. 160, 483–489 (1989).
Google Scholar
Barth, W. F., Wochner, R. D., Waldmann, T. A. & Fahey, J. L. Metabolism of human gamma macroglobulins. J. Clin. Invest. 43, 1036 (1964).
Google Scholar
Mehlitz, D. & Molyneux, D. H. The elimination of Trypanosoma brucei gambiense? Challenges of reservoir hosts and transmission cycles: expect the unexpected. Parasite Epidemiol. Control 6, e00113 (2019).
Google Scholar
Larcombe, S. D., Briggs, E. M., Savill, N., Szoor, B. & Matthews, K. The developmental hierarchy and scarcity of replicative slender trypanosomes in blood challenges their role in infection maintenance. Proc. Natl Acad. Sci. USA 120, e2306848120 (2023).
Google Scholar
Morrison, L. J., Majiwa, P., Read, A. F. & Barry, J. D. Probabilistic order in antigenic variation of Trypanosoma brucei. Int. J. Parasitol. 35, 961–972 (2005).
Google Scholar
Pinger, J., Chowdhury, S. & Papavasiliou, F. N. Variant surface glycoprotein density defines an immune evasion threshold for African trypanosomes undergoing antigenic variation. Nat. Commun. 8, 828 (2017).
Trindade, S. et al. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat. Commun. 13, 7548 (2022).
Google Scholar
Shimogawa, M. M. et al. Parasite motility is critical for virulence of African trypanosomes. Sci. Rep. 8, 9122 (2018).
Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
Google Scholar
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
Google Scholar
Cock, P. J. A. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).
Google Scholar
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009).
Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
Google Scholar
Li, W. & Godzik, A. CD-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
Google Scholar
Krueger, F. et al. FelixKrueger/TrimGalore: v.0.6.4 – add default decompression path. Zenodo https://doi.org/10.5281/zenodo.5127898 (2023).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Google Scholar
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Google Scholar
So, J. et al. VSGs expressed during natural T. b. gambiense infection exhibit extensive sequence divergence and a subspecies-specific bias towards type B N-terminal domains. mBio 13, e02553-22 (2022).
Gruszynski, A. E., DeMaster, A., Hooper, N. M. & Bangs, J. D. Surface coat remodeling during differentiation of Trypanosoma brucei. J. Biol. Chem. 278, 24665–24672 (2003).
Google Scholar
Lee, J.-Y. & Kitaoka, M. A beginner’s guide to rigor and reproducibility in fluorescence imaging experiments. Mol. Biol. Cell https://doi.org/10.1091/mbc.E17-05-0276 (2018).
Wirtz, E., Leal, S., Ochatt, C. & Cross, G. A. M. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol. Biochem. Parasitol. 99, 89–101 (1999).
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
Shanmugasundram, A. et al. TriTrypDB: an integrated functional genomics resource for kinetoplastida. PLoS Negl. Trop. Dis. 17, e0011058 (2023).
Google Scholar
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
Google Scholar
Song, Y. & Wang, J. ggcoverage: an R package to visualize and annotate genome coverage for various NGS data. BMC Bioinf. 24, 309 (2023).
Google Scholar
Moloo, S. K. An artificial feeding technique for Glossina. Parasitology 63, 507–512 (1971).
Google Scholar
MacLeod, E. T., Maudlin, I., Darby, A. C. & Welburn, S. C. Antioxidants promote establishment of trypanosome infections in tsetse. Parasitology 134, 827–831 (2007).
Google Scholar
Beaver, A. mugnierlab/Beaver2022: Release for publication. Zenodo https://doi.org/10.5281/zenodo.13684001 (2024).
Barnett, S. A. The skin and hair of mice living at a low environmental temperature. Q. J. Exp. Physiol. Cogn. Med. Sci. 44, 35–42 (1959).
Google Scholar