Topological segregation of stress sensors along the gut crypt–villus axis – Nature

Gershon, M. D. 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr. Opin. Endocrinol. Diabetes Obes. 20, 14–21 (2013).
Google Scholar
Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).
Google Scholar
Nozawa, K. et al. TRPA1 regulates gastrointestinal motility through serotonin release from enterochromaffin cells. Proc. Natl Acad. Sci. USA 106, 3408–3413 (2009).
Google Scholar
Bellono, N. W. et al. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198 (2017).
Google Scholar
Chen, Z. et al. Interleukin-33 promotes serotonin release from enterochromaffin cells for intestinal homeostasis. Immunity 54, 151–163 (2021).
Google Scholar
Lund, M. L. et al. Enterochromaffin 5-HT cells—a major target for GLP-1 and gut microbial metabolites. Mol. Metab. 11, 70–83 (2018).
Google Scholar
Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).
Google Scholar
Erspamer, V. & Asero, B. Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169, 800–801 (1952).
Google Scholar
Strege, P. R. et al. Sodium channel NaV1.3 is important for enterochromaffin cell excitability and serotonin release. Sci. Rep. 7, 15650 (2017).
Google Scholar
Mawe, G. M., Hurd, M., Hennig, G. W. & Lavoie, B. Epithelial 5-HT4 receptors as a target for treating constipation and intestinal inflammation. Adv. Exp. Med. Biol. 1383, 329–334 (2022).
Google Scholar
Thompson, A. J. & Lummis, S. C. 5-HT3 receptors. Curr. Pharm. Des. 12, 3615–3630 (2006).
Google Scholar
Xie, Z. et al. The gut-to-brain axis for toxin-induced defensive responses. Cell 185, 4298–4316 (2022).
Google Scholar
Bayrer, J. R. et al. Gut enterochromaffin cells drive visceral pain and anxiety. Nature 616, 137–142 (2023).
Google Scholar
Bockaert, J., Claeysen, S., Compan, V. & Dumuis, A. 5-HT4 receptors. Curr. Drug Targets CNS Neurol. Disord. 3, 39–51 (2004).
Google Scholar
Tough, I. R., Lund, M. L., Patel, B. A., Schwartz, T. W. & Cox, H. M. Paracrine relationship between incretin hormones and endogenous 5-hydroxytryptamine in the small and large intestine. Neurogastroenterol. Motil. 35, e14589 (2023).
Google Scholar
Barrett, K. E. & Keely, S. J. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62, 535–572 (2000).
Google Scholar
Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 14, 141–153 (2014).
Google Scholar
Beumer, J. et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat. Cell Biol. 20, 909–916 (2018).
Google Scholar
Song, Y. et al. Stratification of enterochromaffin cells by single-cell expression analysis. Preprint at bioRxiv https://doi.org/10.1101/2023.08.24.554649 (2023).
Hayashi, M. et al. Enteroendocrine cell lineages that differentially control feeding and gut motility. eLife 12, e78512 (2023).
Google Scholar
Bertrand, P. P. & Bertrand, R. L. Serotonin release and uptake in the gastrointestinal tract. Auton. Neurosci. 153, 47–57 (2010).
Google Scholar
Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).
Google Scholar
Deng, F. et al. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat. Methods 21, 692–702 (2024).
Google Scholar
Madison, B. B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem. 277, 33275–33283 (2002).
Google Scholar
McCorvy, J. D. et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol. 25, 787–796 (2018).
Google Scholar
Boj, S. F. et al. Forskolin-induced swelling in intestinal organoids: an in vitro assay for assessing drug response in cystic fibrosis patients. J. Vis. Exp. https://doi.org/10.3791/55159-v (2017).
Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143 (2019).
Google Scholar
Fung, C. et al. Luminal nutrients activate distinct patterns in submucosal and myenteric neurons in the mouse small intestine. Preprint at bioRxiv https://doi.org/10.1101/2021.01.19.427232 (2021).
Morarach, K. et al. Diversification of molecularly defined myenteric neuron classes revealed by single-cell RNA sequencing. Nat. Neurosci. 24, 34–46 (2021).
Google Scholar
Hassaine, G. et al. X-ray structure of the mouse serotonin 5-HT3 receptor. Nature 512, 276–281 (2014).
Google Scholar
Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).
Google Scholar
Nilius, B. & Appendino, G. Spices: the savory and beneficial science of pungency. Rev. Physiol. Biochem. Pharmacol. 164, 1–76 (2013).
Google Scholar
LoPachin, R. M., Geohagen, B. C. & Nordstroem, L. U. Mechanisms of soft and hard electrophile toxicities. Toxicology 418, 62–69 (2019).
Google Scholar
Achanta, S. & Jordt, S. E. TRPA1: acrolein meets its target. Toxicol. Appl. Pharmacol. 324, 45–50 (2017).
Google Scholar
Hews, C. L. et al. The StcE metalloprotease of enterohaemorrhagic Escherichia coli reduces the inner mucus layer and promotes adherence to human colonic epithelium ex vivo. Cell. Microbiol. 19, e12717 (2017).
Google Scholar
Malaker, S. A. et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc. Natl Acad. Sci. USA 116, 7278–7287 (2019).
Google Scholar
Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).
Google Scholar
Miura, N. et al. Anti-CD3 induces bi-phasic apoptosis in murine intestinal epithelial cells: possible involvement of the Fas/Fas ligand system in different T cell compartments. Int. Immunol. 17, 513–522 (2005).
Google Scholar
Linan-Rico, A. et al. Purinergic autocrine regulation of mechanosensitivity and serotonin release in a human EC model: ATP-gated P2X3 channels in EC are downregulated in ulcerative colitis. Inflamm. Bowel Dis. 19, 2366–2379 (2013).
Google Scholar
Wu, Z. et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770–782 (2022).
Google Scholar
Harrington, A. M. et al. Colonic afferent input and dorsal horn neuron activation differs between the thoracolumbar and lumbosacral spinal cord. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G285–G303 (2019).
Google Scholar
Kumar, A. et al. The serotonin neurotransmitter modulates virulence of enteric pathogens. Cell Host Microbe 28, 41–53 (2020).
Google Scholar
Reigstad, C. S. et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403 (2015).
Google Scholar
Bertrand, P. P., Bertrand, R. L., Camello, P. J. & Pozo, M. J. Simultaneous measurement of serotonin and melatonin from the intestine of old mice: the effects of daily melatonin supplementation. J Pineal Res. 49, 23–34 (2010).
Google Scholar
Patel, B. A., Bian, X., Quaiserová-Mocko, V., Galligan, J. J. & Swain, G. M. In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the guinea pig ileum. Analyst 132, 41–47 (2007).
Google Scholar
Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).
Google Scholar
Zhao, J., Lin King, J. V., Paulsen, C. E., Cheng, Y. & Julius, D. Irritant-evoked activation and calcium modulation of the TRPA1 receptor. Nature 585, 141–145 (2020).
Google Scholar
Kaelberer, M. M. et al. A gut–brain neural circuit for nutrient sensory transduction. Science 361, eaat5236 (2018).
Google Scholar
Dodds, K. N. et al. The gut–brain axis: spatial relationship between spinal afferent nerves and 5-HT-containing enterochromaffin cells in mucosa of mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G523–G533 (2022).
Google Scholar
Spencer, N. J., Kyloh, M. A., Travis, L. & Hibberd, T. J. Identification of vagal afferent nerve endings in the mouse colon and their spatial relationship with enterochromaffin cells. Cell Tissue Res. 396, 313–327 (2024).
Google Scholar
Parent, R. A., Caravello, H. E., Balmer, M. F., Shellenberger, T. E. & Long, J. E. One-year toxicity of orally administered acrolein to the beagle dog. J. Appl. Toxicol. 12, 311–316 (1992).
Google Scholar
Zhang, J., Sturla, S., Lacroix, C. & Schwab, C. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio 9, e01947-17 (2018).
Google Scholar
Tarabova, L., Makova, Z., Piesova, E., Szaboova, R. & Faixova, Z. Intestinal mucus layer and mucins (a review). Folia Vet. 60, 21–25 (2016).
Google Scholar
Limdi, J. K. Dietary practices and inflammatory bowel disease. Indian J. Gastroenterol. 37, 284–292 (2018).
Google Scholar
Paone, P. & Cani, P. D. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69, 2232–2243 (2020).
Google Scholar
Andersson, D. A., Gentry, C., Moss, S. & Bevan, S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J. Neurosci. 28, 2485–2494 (2008).
Google Scholar
North, R. A. P2X3 receptors and peripheral pain mechanisms. J. Physiol. 554, 301–308 (2004).
Google Scholar
Burnstock, G. P2X receptors in the gut. WIREs Membr. Transp. Signal. 1, 269–279 (2011).
Google Scholar
Aviello, G. & Knaus, U. G. ROS in gastrointestinal inflammation: rescue or sabotage? Br. J. Pharmacol. 174, 1704–1718 (2017).
Google Scholar
Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug Discov. 21, 41–59 (2022).
Google Scholar
Sei, Y. et al. Mature enteroendocrine cells contribute to basal and pathological stem cell dynamics in the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 315, G495–G510 (2018).
Google Scholar
Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).
Google Scholar
Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).
Google Scholar
de Souza Goncalves, L. et al. Mg2+ supplementation treats secretory diarrhea in mice by activating calcium-sensing receptor in intestinal epithelial cells. J. Clin. Invest. 134, e171249 (2024).
Google Scholar
Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).
Google Scholar
Grundy, L. et al. Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight 3, e121841 (2018).
Google Scholar
Wang, Q. et al. Comparative localization of colorectal sensory afferent central projections in the mouse spinal cord dorsal horn and caudal medulla dorsal vagal complex. J. Comp. Neurol. 532, e25546 (2024).
Google Scholar
Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68, 633–644 (2019).
Google Scholar
Brierley, S. M., Jones, R. C. 3rd, Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004).
Google Scholar